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Prefacio

Este libro ha sido concebido con la intencién de transfor-
mar el paradigma del aprendizaje de las matemaéticas en la
carrera de Acuicultura, donde tradicionalmente se ha tra-
bajado con enfoques que producen estudiantes mecanicos,
centrados en la repeticién y no en la comprensién profun-
da. En este contexto, se propone un enfoque basado en el
razonamiento matematico, integrando la programacion co-
mo herramienta pedagdgica. Las clases se matizan con la
resolucion de problemas contextualizados en el cdlculo di-
ferencial e integral, utilizando el lenguaje de programacion
Python como puente entre la teoria matematica y su apli-
cacion en situaciones reales del dambito acuicola.

Objetivo General

Proporcionar a los estudiantes una guia que les permita
comprender y aplicar los conceptos fundamentales del calcu-
lo diferencial e integral, utilizando el lenguaje de progra-
macién Python como medio para la visualizacion, experi-
mentacion y resolucién de problemas reales relacionados



con su campo de estudio.

Estructura del Libro

El contenido del libro esta dividido en capitulos que abor-
dan temas centrales del calculo, integrando teoria esencial
con ejercicios resueltos en Python:

= Introduccién al entorno de trabajo en Python (Goo-
gle Colab, Jupyter Notebook).

= Derivadas: interpretacion gréfica, reglas de deriva-
cidn, y aplicaciones en modelos simples.

= [Integrales: conceptos bésicos, integracién numérica,
y cdlculo de areas.

= Aplicaciones practicas en problemas vinculados a la
biologia, acuicultura y produccién agropecuaria.

Cada capitulo incluye ejemplos detallados, ejercicios pro-
puestos, y un laboratorio con c6édigo comentado para faci-
litar el aprendizaje autébnomo.

Caracteristicas Pedagégicas

Este libro incorpora una metodologia activa, centrada en el
estudiante, con las siguientes caracteristicas:

= Uso de Python como lenguaje accesible para la ex-
ploracion de conceptos matemaéticos.
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= Explicaciones claras y ejemplos contextualizados en
el area agropecuaria.

= Cddigos ejecutables y modificables que permiten ex-
perimentar y aprender haciendo.

= Disefio modular que facilita su uso en cursos semes-
trales, talleres o autoaprendizaje.

Esperamos que esta obra sirva como puente entre la teoria
matematica y su aplicacién prictica, motivando a los estu-
diantes a desarrollar competencias analiticas y tecnoldgi-
cas que contribuyan a su formacion integral y profesional.
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1 Introducciéon al Mundo de Python

Objetivos especificos del capitulo

= Comprender la evolucidn, caracteristicas y ventajas
del lenguaje Python como herramienta educativa en
ciencias aplicadas.

= [dentificar las principales estructuras de datos en Python
y su relevancia en el desarrollo de algoritmos mate-
maticos.

= Instalar y configurar el entorno de desarrollo Python,
explorando sus herramientas bdsicas de ejecucion de
codigo.

= Utilizar bibliotecas fundamentales como NumPy, SymPy
y Matplotlib para representar funciones matematicas
y resolver problemas bdasicos de cdlculo.

El Calculo Diferencial e Integral ha sido una de las dreas
maés influyentes en el desarrollo de la ciencia y la tecnolo-
gfa. Su impacto se extiende desde la fisica y la ingenieria
hasta la economia y la inteligencia artificial. No obstante,
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su ensefianza ha sido tradicionalmente tedrica, basada en
la manipulacién algebraica de ecuaciones y la demostra-
cion rigurosa de teoremas. Si bien este enfoque es funda-
mental para el desarrollo del pensamiento matematico, la
creciente digitalizaciéon del conocimiento y la expansion
de la computacion cientifica han generado la necesidad de
complementar el aprendizaje del cdlculo con herramientas
computacionales que permitan visualizar, simular y resol-
ver problemas de manera més efectiva (Diaz, 2020).

El razonamiento matematico es la base del pensamien-
to abstracto y analitico en las matematicas. Consiste en la
capacidad de formular conjeturas, estructurar argumentos
l6gicos y demostrar propiedades de los objetos matemati-
cos. En el contexto del cdlculo, esto implica comprender
los conceptos de limite, derivada e integral, asi como sus
aplicaciones en la modelizacién de fenémenos naturales
y artificiales. Sin embargo, en el mundo actual, donde el
volumen de datos y la complejidad de los problemas cre-
cen exponencialmente, es esencial desarrollar también el
razonamiento computacional matematico, el cual per-
mite abordar problemas desde una perspectiva algoritmica
y programatica (Martinez, 2019).

El razonamiento computacional en mateméticas involucra
el uso de algoritmos, estructuras de datos y simulaciones
numéricas para analizar y resolver problemas de célculo
de manera eficiente. Con herramientas como Python, los
estudiantes pueden realizar cdlculos simbodlicos y numéri-
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cos con bibliotecas especializadas como SymPy, NumPy y
SciPy. Esto les permite no solo verificar resultados obte-
nidos analiticamente, sino también experimentar con pro-
blemas que serian demasiado complejos para resolver ma-
nualmente. Ademads, la representacion grafica de funciones
y soluciones de ecuaciones diferenciales proporciona una
comprension visual de los conceptos matematicos, facili-
tando su interpretacion (Perez, 2021).

El uso de un laboratorio computacional en la ensefianza
del célculo presenta multiples beneficios. En primer lugar,
permite a los estudiantes interactuar con los conceptos ma-
tematicos de manera dindmica, lo que fomenta un aprendi-
zaje mas significativo. En segundo lugar, proporciona he-
rramientas para la resolucion de problemas del mundo real,
como la optimizacién de recursos, el modelado de sistemas
fisicos y el andlisis de datos en distintas disciplinas. Fi-
nalmente, promueve una formacién interdisciplinaria, in-
tegrando conocimientos matematicos con habilidades de
programacion y computacion cientifica, competencias al-
tamente valoradas en el 4mbito académico y profesional
(Gomez, 2022).

Python fue desarrollado por Guido van Rossum en 1991
como un lenguaje de programacion interpretado, interac-
tivo y orientado a objetos (Van Rossum, 1991). Su disefio
enfatiza la legibilidad del cédigo y la simplicidad, convir-
tiéndolo en una herramienta ideal tanto para principiantes
COmo para expertos.
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1.0.1 Caracteristicas principales

Python destaca por las siguientes caracteristicas (Lutz, 2013;
Nelli, 2015):

» Es multiplataforma: compatible con Windows, ma-
cOS y Linux.

= Soporte para programacion estructurada, funcional
y orientada a objetos.

= Extensibilidad mediante bibliotecas y médulos.

= Comunidad activa que mantiene y mejora el lengua-
je constantemente.

1.1 Instalacion y configuraciones iniciales

Instalar Python es sencillo y puede realizarse desde su si-
tio oficial (Python Software Foundation, 2025). Se reco-
mienda usar distribuciones como Anaconda para entornos
cientificos (Harrington, 2016).

1. Descarga: Accede al sitio oficial de Anaconda en
https://www.anaconda.com/ y selecciona la ver-
sién de Python 3 para tu sistema operativo (Win-
dows, macOS o Linux).

2. Ejecucion del instalador: Descarga el archivo y eje-
cutalo. Sigue las instrucciones del asistente de ins-
talacion. Se recomienda instalar Anaconda para un
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usuario especifico y no requerir privilegios de admi-
nistrador.

3. Configuracion del entorno: Durante la instalacion,
selecciona la opcién para afiadir Anaconda a las va-
riables de entorno (PATH). Esto facilita el uso de
Python desde la terminal.

4. Verificacion: Una vez instalado, abre la terminal o
el simbolo del sistema y escribe:

1 conda --version

2 python --version

1.1: Verificacion de la instalacion de Anaconda

Si los comandos muestran las versiones de Conda y
Python, la instalacion fue exitosa.

5. Actualizacion: Aseguirate de tener las dltimas ver-
siones de Anaconda y sus paquetes escribiendo:

1 conda update conda

2 conda update anaconda

1.2: Actualizacioén de Anaconda

Con Anaconda instalado, puedes usar herramientas como
Jupyter Notebook y Spyder para proyectos cientificos y
educativos.
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1.1.1 Primeros pasos con Python

El intérprete de Python permite ejecutar comandos inter-
activos. Por ejemplo:

print("Hola, mundo!")

1.3: Ejemplo: Hola Mundo en Python

1.2 Bibliotecas clave para matematicas y vi-
sualizacion

Python cuenta con bibliotecas especializadas que poten-
cian su uso en matematicas y ciencias. Entre ellas desta-
can:

» NumPy: Manipulacién de matrices y dlgebra lineal
(Oliphant, 2006).

= matplotlib: Creacién de graficosy visualizaciones
(Hunter, 2007).

= SymPy: Célculo simbdlico (Meurer et al., 2017).

1.3 Python en educacion y ciencia

En la actualidad, el lenguaje de programacién Python se
ha convertido en una herramienta fundamental en la ense-
nanza de las matemadticas y la ciencia. Su sintaxis clara y
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su flexibilidad lo hacen ideal para estudiantes y docentes
que desean aplicar conceptos matematicos y cientificos sin
la complejidad de lenguajes mas técnicos. Python no solo
es utilizado en el dmbito académico, sino que también es
ampliamente empleado en la investigacion cientifica, la in-
genieria y la inteligencia artificial (VanRossum, 2009).

1.4 Python como herramienta educativa

La ensefianza de las matematicas tradicionalmente se ha
basado en métodos analiticos y algebraicos, lo que puede
resultar abstracto para muchos estudiantes. La incorpora-
cién de Python en el aula permite una aproximacion mds
intuitiva y visual a los conceptos matematicos. Gracias a
bibliotecas como Matplotlib y SymPy, los alumnos pue-
den representar graficamente funciones, calcular derivadas
e integrales simbdlicamente y experimentar con modelos
matematicos interactivos (Lutz, 2013).

Ademéds, Python fomenta el aprendizaje basado en pro-
yectos, un enfoque pedagdgico en el que los estudiantes
aplican sus conocimientos para resolver problemas reales.
Este método ha demostrado mejorar la comprension y re-
tencién del conocimiento, ya que los alumnos pueden ver
la utilidad préctica de las matematicas en la resolucion de
problemas del mundo real (Grus, 2019).
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1.5 Aplicaciones cientificas de Python

En el dmbito de la ciencia y la ingenieria, Python se ha
consolidado como una herramienta indispensable para la
modelizacion matemadtica, el andlisis de datos y la simu-
lacion de sistemas complejos. Gracias a bibliotecas como
NumPy, SciPy y Pandas, los cientificos pueden procesar
grandes volumenes de datos y realizar cédlculos avanzados
con facilidad (Oliphant, 2015).

En la fisica, por ejemplo, Python es utilizado para resol-
ver ecuaciones diferenciales que modelan fendmenos na-
turales como el movimiento de particulas, la propagacién
de ondas y la dindmica de fluidos. En biologia, se emplea
para analizar secuencias genéticas y modelar procesos bio-
quimicos. En economia y finanzas, es una herramienta cla-
ve para el andlisis de series temporales y la prediccion de
mercados (McKinney, 2017).

1.5.1 Python en la inteligencia artificial y el aprendi-
zaje automatico

El auge del aprendizaje automadtico y la inteligencia artifi-
cial ha impulsado ain més la popularidad de Python. Bi-
bliotecas como TensorFlow y scikit-learn han permi-
tido que investigadores y desarrolladores construyan mo-
delos de aprendizaje profundo para el reconocimiento de
imagenes, el procesamiento de lenguaje natural y la toma
de decisiones automatizadas (Goodfellow, 2016).
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En la educacion, estos avances han llevado al desarrollo de
sistemas de tutoria inteligentes que personalizan el apren-
dizaje segun el progreso del estudiante. Los algoritmos
de aprendizaje automético pueden analizar patrones en los
datos de los estudiantes y proporcionar retroalimentacion
adaptativa, mejorando significativamente la ensefianza per-
sonalizada (Russell, 2020).

1.6 Ejemplo practico: Grafico de una funcion

A continuacidn, se muestra un ejemplo para graficar f(x) =

x? usando matplotlib:

import matplotlib.pyplot as plt

import numpy as np

np.linspace(-10, 10, 100)
y = X k%D

plt.plot(x, y, label="f(x) = x~2’)

N N R . I N VU SR

plt.
.ylabel(P£(x)’)
plt.
plt.
plt.
plt.

plt

xlabel(’x?)

title(’Grafico de la funcidén cuadratica’)
legend ()

grid()

show()

1.4: Grafico de una funcion cuadratica
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1.7 Introduccion al Mundo de Python

Python es un lenguaje de programacion poderoso y versatil
que ha ganado popularidad en una amplia variedad de dis-
ciplinas, incluyendo el célculo diferencial e integral. Este
capitulo proporciona una introduccién detallada al lengua-
je, destacando sus caracteristicas principales y su aplicabi-
lidad en contextos cientificos y educativos.

1.8 Historia y caracteristicas de Python

Python fue desarrollado por Guido van Rossum en 1991
como un lenguaje de programacion interpretado, interac-
tivo y orientado a objetos (Van Rossum, 1991). Su disefo
enfatiza la legibilidad del cédigo y la simplicidad, convir-
tiéndolo en una herramienta ideal tanto para principiantes
COmo para expertos.

1.8.1 Caracteristicas principales

Python destaca por las siguientes caracteristicas (Lutz, 2013;
Nelli, 2015):

= Es multiplataforma: compatible con Windows, ma-
cOS y Linux.

= Soporte para programacion estructurada, funcional
y orientada a objetos.

= Extensibilidad mediante bibliotecas y médulos.
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= Comunidad activa que mantiene y mejora el lengua-
je constantemente.
1.8.2 Importacion de bibliotecas y funciones

En Python, puedes importar bibliotecas y funciones para
ampliar la funcionalidad bésica del lenguaje. Existen va-
rias formas de hacerlo, dependiendo de lo que necesites:

= Importar toda la biblioteca:

1 import numpy
2 array = numpy.array([1, 2, 3]1)

1.5: Importar toda la biblioteca

Esto importa toda la biblioteca y accedes a sus fun-
ciones mediante el prefijo numpy ..

= Importar con un alias:

1 import numpy as np
2 array = np.array([1, 2, 3]1)

1.6: Importar con alias

Usar un alias (por ejemplo, np) simplifica el uso de
bibliotecas con nombres largos.

= Importar funciones especificas:
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1 from math import sqrt, pi
2 result = sqrt(16)
3 print(pi)

1.7: Importar funciones especificas

Esto importa solo las funciones necesarias, evitando
cargar toda la biblioteca.

= Importar todas las funciones (no recomendado):

1 from math import *
2 result = sqrt(16)

1.8: Importar todo de una biblioteca

Aunque funcional, esta prictica puede causar con-
flictos si diferentes bibliotecas tienen funciones con
el mismo nombre.

La eleccion del método de importacion depende del con-
texto y las necesidades del proyecto.

1.9 Estructuras de datos en Python

Las estructuras de datos son fundamentales para almace-
nar, organizar y manipular datos de manera eficiente. Python
incluye diversas estructuras de datos nativas que permi-
ten trabajar con colecciones y relaciones entre datos (Lutz,
2013; Hetland, 2005).
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1.9.1 Listas

Las listas son colecciones ordenadas y mutables que per-
miten almacenar elementos heterogéneos:

mi_lista = [1, 2, 3, "Python"]
mi_lista.append(4) # Adgrega un elemento
print(mi_lista[2]) # Accede al tercer elemento

1.9: Ejemplo de listas

1.9.2 Tuplas

Las tuplas son similares a las listas, pero son inmutables,
lo que significa que no pueden ser modificadas después de
su creacion:

mi_tupla = (1, 2, 3, "Python")
print(mi_tupla[1]) # Accede al segundo elemento

1.10: Ejemplo de tuplas

1.9.3 Diccionarios

Los diccionarios almacenan pares clave-valor y son ttiles
para representar datos estructurados:

mi_diccionario = {"nombre": "Python", "afio": 1991}
print(mi_diccionario["nombre"]) # dccede al walor

asoctado a la clave '"mombre"

1.11: Ejemplo de diccionarios
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1.9.4 Conjuntos

Los conjuntos son colecciones no ordenadas de elementos
unicos:

mi_conjunto = {1, 2, 3, 3} # Elimine duplicados
automdticamente

print(mi_conjunto)

1.12: Ejemplo de conjuntos

1.9.5 Uso avanzado

Estas estructuras pueden combinarse para formar estructu-
ras complejas, como listas de diccionarios o diccionarios
de listas, que son titiles en andlisis de datos y programa-
cién avanzada (Hetland, 2005).

1.9.6 Operaciones aritméticas

Las operaciones aritméticas bdsicas son sencillas en Python:

print(a + b) # Suma

print(a - b) # Resta

print(a * b) # Multiplicacion
print(a / b) # Division
print(a // b) # Divisién entera
print(a % b) # Médulo

print(a ** b) # Potencia

1.13: Operaciones aritméticas
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1.9.7 Operaciones con cadenas de texto

Python facilita trabajar con cadenas de texto:

cadena = "Python"

print(cadena + " es genial") # Concatenacion
print(cadena * 3) # Repeticidn
print(len(cadena)) # Longitud de la cadena
print(cadenal0]) # Acceso al primer cardcter

1.14: Operaciones con cadenas

1.9.8 Comparaciones

Las operaciones de comparacién devuelven valores boo-
leanos:

a=>5

b =10

print(a == b) # Igualdad

print(a '= b) # Diferencia
print(a < b) # Nenor que

print(a > b) # Hayor que

print(a <= b) # Menor o igual que
print(a >= b) # Mayor o igual que

1.15: Operaciones de comparacion

1.9.9 Operaciones légicas

Python incluye operadores 16gicos como and, or y not:

30




L S S

[ S S

a = True

b = False

print(a and b) # AND légico
print(a or b) # 0OR ldgico
print(not a) # NOT ldgico

1.16: Operaciones l6gicas

1.10 Funciones y Mo6dulos

Las funciones y médulos son elementos clave para estruc-
turar y organizar el c6digo en Python. Permiten reutilizar
bloques de c6digo y mantener programas mds legibles y
escalables (Lutz, 2013).

1.10.1 Funciones

Una funcién es un bloque de cédigo reutilizable que rea-
liza una tarea especifica. Las funciones se definen con la
palabra clave def:

def saludo(nombre):
"""Imprime un saludo personalizado."""

print(f"Hola, {nombre}!")

saludo("Python")

1.17: Definicién de una funcion
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Funciones con valores de retorno

Las funciones pueden devolver valores utilizando la pala-
bra clave return:

[ N

def suma(a, b):
return a + b

resultado = suma(3, 5)
print(resultado) # Imprime 8

1.18: Funcion con retorno

Parametros opcionales

Es posible definir pardmetros con valores predetermina-
dos:

N N

def saludo(nombre, mensaje="Bienvenido"):

print(f"Hola, {nombre}. {mensajel}")

saludo("Python") # Usa el walor predeterminado para
‘mensaje’

saludo("Python", ";Es un placer verte!")

1.19: Funcién con pardmetros opcionales

1.10.2 Moadulos

Un moédulo es un archivo de Python que contiene funcio-
nes, clases y variables definidas para ser reutilizadas en
otros programas. Python incluye numerosos médulos en
su biblioteca estandar (Downey, 2012).
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Importar un médulo

Puedes importar un médulo utilizando la palabra clave import:

import math

print(math.sqrt(16)) # Calcula la raiz cuadrada
print(math.pi) # Imprime el valor de pt

1.20: Uso del médulo math

Crear un médulo propio

Para crear un moédulo, guarda tus funciones en un archivo
.py. Por ejemplo, crea un archivo llamado mimodulo . py:

def saludo():

print(";Hola desde mi médulo!")

1.21: Definicién de un médulo

Luego, puedes importarlo y usarlo:

import mimodulo

mimodulo.saludo()

1.22: Uso de un médulo propio

1.11 Estructuras de Control

Las estructuras de control en Python permiten tomar de-
cisiones y repetir bloques de c6digo de manera eficien-
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te. Estas estructuras incluyen condicionales, bucles y otras
herramientas para controlar el flujo del programa (Lutz,
2013; Hetland, 2005).

1.11.1 Condicionales

Los condicionales permiten ejecutar bloques de cédigo de-
pendiendo de si una condicion es verdadera o falsa:

# Ejemplo de if, elif y else
x =10

if x > 0:

print("El nimero es positivo")
elif x == 0:

print("El nimero es cero")
else:

print("El nimero es negativo")

1.23: Uso de condicionales

1.11.2 Bucles
Los bucles permiten repetir un bloque de cddigo varias ve-

CES:

Bucle for

El bucle for se utiliza para iterar sobre secuencias como
listas o rangos:
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# Iterar sobre una lista
numeros = [1, 2, 3, 4]
for numero in numeros:
print (numero)

# Iterar usando range
for i in range(5):
print(i)

1.24: Bucle for

Bucle while

El bucle while se utiliza cuando el nimero de iteraciones
no esta determinado de antemano:

[ N

# Ejemplo de while
contador = 0O

while contador < b5:
print(contador)
contador += 1

1.25: Bucle while

1.11.3 Interrupcion de bucles

Las sentencias break y continue permiten controlar el
flujo dentro de los bucles:
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= 5

# Uso de break

for i in range(10):

if i ==

break # Salir del bucle
print(i)

# Uso de continue

for i in range(10):

if i 4 2 ==0:

continue # Saltar a la siguiente iteracion
print(i)

1.26: Uso de break y continue

1.11.4 Comprensiones

Las comprensiones permiten crear listas, conjuntos y dic-
cionarios de forma compacta:

B T N N N

# Crear una lista con nimeros al cuadrado
cuadrados = [x**2 for x in range(10)]
print(cuadrados)

# Crear un diccionario con nimeros y sus cuadrados
cuadrados_dic = {x: x**2 for x in range(10)}

print(cuadrados_dic)

1.27: Comprensiones de listas
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1.12 Manipulacion de Listas, Tuplas y Diccio-
narios

Las listas, tuplas y diccionarios son estructuras de datos
esenciales en Python. Ofrecen diversas formas de alma-
cenar, acceder y manipular datos, lo que las hace funda-
mentales para programar de manera eficiente (Lutz, 2013;
Hetland, 2005).

1.12.1 Manipulacion de listas

Las listas son mutables y permiten almacenar elementos
heterogéneos. Las operaciones comunes incluyen:

Acceso a elementos

mi_lista = [10, 20, 30, 40, 50]
print(mi_lista[0]) # Primer elemento
print(mi_listal[-1]) # Ultimo elemento

1.28: Acceso a elementos de una lista

Modificacion de elementos

mi_lista = [1, 2, 3, 4]
mi_lista[2] = 99 # Cambia el tercer elemento

print(mi_lista)

1.29: Modificacion de listas
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M¢étodos comunes

mi_lista = [1, 2, 3]

mi_lista.append(4) # Adgrege un elemento al final

mi_lista.insert(1l, 99) # Inserta un elemento en la
posicion 1

mi_lista.remove(2) # Elimina el elemento 2

print(mi_lista.pop()) # Elimina y devuelve el #ltimo
elemento

print(mi_lista)

1.30: Uso de métodos en listas

Slicing

El slicing permite obtener sublistas:

N

mi_lista = [0, 1, 2, 3, 4, 5]
print(mi_lista[1:4]) # Elementos del indice 1 al 3
print(mi_listal[:3]) # Primeros tres elementos

print(mi_listal[::2]) # Elementos con paso 2

1.31: Uso de slicing

1.12.2 Manipulacion de tuplas

Las tuplas son inmutables, lo que significa que no pueden
modificarse después de su creacion. Esto las hace ideales
para almacenar datos que no cambian.

Acceso a elementos
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mi_tupla = (10, 20, 30, 40)
print(mi_tupla[1]) # Segundo elemento
print(mi_tupla[-1]) # Ultimo elemento

1.32: Acceso a elementos de una tupla

Conversion entre tuplas y listas

Es posible convertir entre tuplas y listas:

mi_tupla = (1, 2, 3)
mi_lista = list(mi_tupla) # Convierte tupla a lista

mi_tupla_nueva = tuple(mi_lista) # Convierte liste a tupla

1.33: Conversion entre tuplas y listas

1.12.3 Manipulacién de diccionarios

Los diccionarios almacenan pares clave-valor, lo que per-
mite un acceso eficiente a los datos.

Acceso y modificacion de elementos

mi_diccionario = {"nombre": "Python", "afio": 1991}

print(mi_diccionario["nombre"]) # dcceso a un wvalor
mi_diccionario["afio"] = 2023 # Modificacion de un walor
mi_diccionario["creador"] = "Guido" # Agregar un nuevo

par clave-valor

1.34: Acceso y modificacién en diccionarios
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M¢étodos comunes
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mi_diccionario = {"a": 1, "b": 2}
print(mi_diccionario.keys()) # Devuelve las claves
print(mi_diccionario.values()) # Devuelve los valores
print(mi_diccionario.items()) # Devuelve pares clave-valor
mi_diccionario.pop("a") # Elimine un par clave-valor

print(mi_diccionario)

1.35: Uso de métodos en diccionarios

Iteracion sobre diccionarios

mi_diccionario = {"nombre": "Python", "afio": 1991}
for clave, valor in mi_diccionario.items():
print(f"{clave}: {valor}")

1.36: Iterar sobre un diccionario

1.13 La biblioteca SymPy

SymPy es una biblioteca de Python disefiada para realizar
célculos simbdlicos. Proporciona herramientas para dlge-
bra, célculo, ecuaciones diferenciales y mas, haciendo que
sea una herramienta poderosa para matemaéticos, ingenie-
ros y cientificos (Meurer et al., 2017).

1.13.1 Instalacion de SymPy

Para instalar SymPy, puedes usar el gestor de paquetes

pip:
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pip install sympy

1.37: Instalacion de SymPy

1.13.2 Operaciones basicas en SymPy

SymPy permite trabajar con expresiones simbdlicas para
realizar cdlculos exactos. A continuacion, se presentan al-
gunas operaciones comunes:

Declaracion de simbolos

Los simbolos son la base para los cdlculos simbdlicos:

from sympy import symbols

X, y = symbols(’x y’)
print(x + y) # Muestra ¢ + y

1.38: Declaracién de simbolos

Calculo de derivadas

SymPy facilita el célculo de derivadas:

from sympy import diff

f = x**%3 + 2%x*x*2 + X
f_prime = diff(f, x)
print(f_prime) # Muestra 3*z##2 + j+z + 1

1.39: Calculo de derivadas
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Resolucion de ecuaciones

SymPy permite resolver ecuaciones algebraicas:

[ Y R O U R N

from sympy import Eq, solve

# Define la ecuacion

ecuacion = Eq(x**2 - 4, 0)
soluciones = solve(ecuacion, x)
print(soluciones) # Nuestra [-2, 2]

1.40: Resolucidén de ecuaciones

Integracion

La integracion simbdlica también es posible con SymPy:

[ N T N

from sympy import integrate

f = x*x2
area = integrate(f, (x, 0, 3))
print(area) # Muestra 9

1.41: Integracion simbdlica

1.13.3 Visualizacion de expresiones

SymPy incluye herramientas para la visualizacion de gri-
ficos:
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from sympy.plotting import plot

f = x*%2
plot(f, (x, -10, 10))

1.42: Graficos con SymPy

1.13.4 Ecuaciones diferenciales

SymPy puede resolver ecuaciones diferenciales ordinarias:

from sympy import Function, dsolve

f = Function(’f?’)
ecuacion = f(x).diff(x, x) - 3*f(x)
solucion = dsolve(ecuacion)

print(solucion)

1.43: Resolucion de ecuaciones diferenciales

1.14 Analisis de temperatura en estanques de
tilapia

El uso de listas, bucles y condicionales en Python permite
procesar datos reales y generar reportes utiles en acuicul-
tura.

Aplicacién en Acuicultura

En una granja de tilapia, se registran las temperaturas dia-
rias del agua durante una semana. El rango ideal est4 entre
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24 °Cy 30 °C. El objetivo es calcular el promedio semanal,
identificar valores fuera del rango, y visualizar los datos.

Datos de Temperatura
= Dia 1:23.5°C
= Dia2:24.8 °C
= Dia3:26.1°C
= Dia4:29.5°C
= Dia5:30.2°C
= Dia 6:25.0 °C

» Dia7:22.9°C

Solucion Manual

1. Sumar todas las temperaturas: 23,5+24,84+26,1+29,5+
30,2+25,0+22,9=182,0 °C

2. Dividir entre 7 dias: 182,0 +7 = 26,0 °C promedio

3. Verificamos qué dias estan fuera del rango: Dia 1 y Dia
7.

Codificacion en Python
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import matplotlib.pyplot as plt

temperaturas = [23.5, 24.8, 26.1, 29.5, 30.2, 25.0, 22.9]
dlaS = ["Lun’l , ’lMarll R ||Mié’| . ’lJuell . ||Vie’| . "Sé.b" , |lD°m’|]

# Cdalculo del promedio
promedio = sum(temperaturas) / len(temperaturas)
print(f"Temperatura promedio: {promedio:.1f} °C")

# Dias fuera del rango ideal

for i, temp in enumerate(temperaturas):

if temp < 24 or temp > 30:

print(£"{dias[il}: {temp} °C (fuera del rango)")

# Grafico

plt.plot(dias, temperaturas, marker=’o’)

plt.axhline(24, color=’r’, linestyle=’--’, label=’Limite
inferior?)

plt.axhline(30, color=’r’, linestyle=’--’, label=’Limite
superior’)

plt.title("Temperatura Semanal del Estanque")

plt.xlabel("Dia")

plt.ylabel("Temperatura (°C)")

plt.legend()

plt.grid(True)

plt.show()

1.44: Andlisis de temperatura semanal

Reflexion Didactica

Este andlisis simula el uso real de sensores y sistemas de
alerta en acuicultura. Python permite automatizar este tipo
de control de forma accesible y didéctica.
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Conclusion del capitulo

Este capitulo ha introducido a los estudiantes en el uso de
Python como herramienta fundamental en el estudio del
calculo. Se ha abordado desde su historia y caracteristi-
cas hasta su instalacion y aplicacién prictica en entornos
cientificos. Se revisaron estructuras de datos, operaciones
aritméticas, visualizacién de funciones, y bibliotecas clave
como NumPy, SymPy y matplotlib. Estos conocimientos
establecen una base s6lida para enfrentar los siguientes ca-
pitulos, donde se aplicard Python al andlisis de limites, de-
rivadas, integrales y otros conceptos esenciales del calculo.

Conclusion del capitulo

Este capitulo ha introducido a los estudiantes en el uso de
Python como herramienta fundamental en el estudio del
célculo. Se ha abordado desde su historia y caracteristi-
cas hasta su instalacion y aplicacion practica en entornos
cientificos. Se revisaron estructuras de datos, operaciones
aritméticas, visualizacién de funciones, y bibliotecas clave
como NumPy, SymPy y matplotlib. Estos conocimientos
establecen una base s6lida para enfrentar los siguientes ca-
pitulos, donde se aplicard Python al andlisis de limites, de-
rivadas, integrales y otros conceptos esenciales del calculo.
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2 Mini Programacion con Python

Objetivos especificos del capitulo

= Comprender los fundamentos de la programacion es-
tructurada aplicados al desarrollo de soluciones ma-
temadticas en Python.

= Aplicar estructuras condicionales y de control de flu-
jo para resolver problemas elementales de célculo.

= Emplear funciones y ciclos iterativos para automa-
tizar procedimientos computacionales en contextos
educativos.

= [ntegrar buenas précticas de codificacién en Python
para el disefio de scripts eficientes y legibles.

2.1 Importancia del pseudocodigo

Antes de escribir cédigo en Python, es recomendable es-
tructurar la solucion del problema en un lenguaje interme-
dio, conocido como pseudocddigo. Esta herramienta per-
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mite organizar las ideas de forma légica sin preocuparse
por la sintaxis, facilitando la comprensién del algoritmo
y reduciendo errores en la implementacion (Knuth, 1997).
El uso del pseudocddigo estd ampliamente aceptado en en-
tornos educativos como una etapa previa esencial en la en-
seflanza de la programacion (Guzdial & Ericson, 2013).

2.2 Implementacion en Python

El pseudocddigo se traduce facilmente en Python. Por ejem-
plo, para calcular el 00elrea de un circulo:

import math

def calcular_area_circulo(radio):

return math.pi * radio**2

radio = float(input("Ingrese el radio del circulo: "))
area = calcular_area_circulo(radio)

print("El area del circulo es:", area)

2.1: Importacion de bibliotecas en Python

Este cddigo ilustra la traduccion clara del razonamiento
algoritmico al cédigo funcional.

2.3 Estructuras de control en Python

Las estructuras de control permiten tomar decisiones y re-
petir procesos, elementos esenciales en la resolucién algo-
ritmica de problemas.
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2.3.1 Condicionales

Se emplean con las sentencias if, elif y else. Ejemplo:

numero = float(input("Ingrese un nimero: "))

if numero > O:

print("El nimero es positivo.")
elif numero < 0:

print("El nimero es negativo.")
else:

print("El nimero es cero.")

2.2: Condicional simple en Python

2.3.2 Bucles

Los bucles permiten ejecutar bloques de cédigo varias ve-
ces. Ejemplo con while:

contador = 1

while contador <= 5:
print("Iteracién numero", contador)
contador += 1
2.3: Bucle while en Python
Con for:

for numero in range(l, 6):

print (numero)

Estas estructuras fomentan el pensamiento iterativo nece-
sario en programacion cientifica (Downey, 2015).
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2.4 Errores comunes al programar

» Olvidar la indentacidn correcta.
= Usar comillas inconsistentes en cadenas.
m Usar variables sin inicializarlas.

= Confundir el tipo de datos (int, str, float).

Reconocer y corregir estos errores mejora la calidad del
codigo y fortalece el aprendizaje.

2.5 Buenas practicas de programacion

= Uso de nombres descriptivos en variables y funcio-
nes.

= Inclusién de comentarios que expliquen la 16gica del
codigo.

= Modularizacion del cédigo en funciones reutiliza-
bles.

m Validacion de entradas del usuario.

Estas estrategias no solo facilitan la lectura del cdédigo,
sino que también mejoran su mantenibilidad (McConnell,
2004).
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2.6 Ejercicios propuestos

1. Escribe un pseudocédigo que calcule el promedio de
3 temperaturas del agua.

2. Implementa un programa que determine si un nime-
ro ingresado es multiplo de 3.

3. Utiliza un bucle para sumar los primeros 10 nimeros
pares.

4. Crea una funcién que calcule el OOedndice de con-
version alimenticia (FCR) usando datos de entrada.

5. Escribe un programa que lea una lista de pesos de
peces y calcule el promedio.

2.7 Uso de estructuras de control para calcu-
lar el indice FCR

En acuicultura, uno de los indicadores mads utilizados para
evaluar la eficiencia alimenticia es el Indice de Conversién
Alimenticia (FCR, por sus siglas en inglés). Se calcula di-
vidiendo la cantidad de alimento proporcionado entre el
incremento de biomasa.

Aplicacion en Acuicultura

Durante una semana, se suministraron 16 kg de alimento a
una piscina de tilapias. La biomasa inicial fue de 48 kg y
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la final fue de 60 kg.

Problema

Calcular el FCR y clasificar la eficiencia alimenticia segtin
los siguientes criterios:

s FCR < 1.5: Excelente
= 1.5 < FCR < 2.0: Aceptable

m FCR > 2.0: Deficiente

Solucion Manual

1. Incremento de biomasa: 60 —48 = 12 kg
2.FCR:16/12 =1,33
3. Clasificacion: Excelente

Codificacion en Python
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alimento = 16 # kg de alimento suministrado
biomasa_inicial = 48 # kg
biomasa_final = 60 # kg

incremento_biomasa = biomasa_final - biomasa_inicial

fcr = alimento / incremento_biomasa
print (£"FCR: {fcr:.2f}")

if fcr < 1.5:
print("Clasificacién: Excelente")
elif 1.5 <= fcr <= 2.0:
print("Clasificacién: Aceptable")
else:

print("Clasificacidén: Deficiente")

2.4: Calculo del FCR y clasificacion

Reflexion Didactica

Este ejemplo ilustra como aplicar estructuras condiciona-
les y operaciones aritméticas bdsicas para resolver un pro-

blema real en la gestion de cultivos acuicolas.

Conclusion del capitulo

El uso del pseudocddigo como herramienta previa a la pro-
gramacion permite a los estudiantes estructurar su pensa-
miento algoritmico y reducir errores. La posterior imple-
mentacion en Python demuestra como conceptos tedricos
pueden traducirse en soluciones funcionales. Con la in-
corporacion de estructuras de control, buenas practicas de
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programacion, y ejercicios contextualizados, se establece
una base sélida para desarrollar programas eficaces y man-
tenibles, esenciales en contextos cientificos y educativos.
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3 Calculo de Limites

Objetivos especificos del capitulo

= Comprender el concepto de limite, incluyendo limi-
tes laterales, al infinito y en funciones por tramos,
como base del analisis matematico.

= Aplicar las propiedades fundamentales de los limi-
tes para simplificar expresiones y resolver proble-
mas simbdlicos.

» Utilizar la biblioteca SymPy de Python para calcu-
lar limites algebraicos, racionales, trigonométricos
y exponenciales.

m Modelar situaciones reales, como el crecimiento de
organismos en acuicultura, mediante el calculo de
limites simbdlicos en Python.
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3.1 Introduccion

El célculo de limites es un concepto fundamental del ané-
lisis matematico que describe el comportamiento de una
funcién cuando la variable independiente se aproxima a
un valor determinado o al infinito. Este concepto es esen-
cial para definir otros temas avanzados como la derivada y
la integral.

3.2 Teoria de los limites

3.2.1 Definicion de limite

El limite de una funcién f(x) cuando x tiende a un valor ¢
se denota como:
lim f(x) = L

X—C
Esto significa que, a medida que x se aproxima a c, los
valores de f(x) se aproximan a L.

3.2.2 Limites laterales

Los limites laterales describen el comportamiento de la
funcién al aproximarse al valor ¢ desde la derecha o desde
la izquierda:

lim f(x) (limite por la derecha)
x—ct

lim f(x) (limite por la izquierda)
X—C~
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El limite existe si y s6lo si ambos limites laterales son
iguales.

3.2.3 Propiedades de los limites

Linealidad: lim,_,.[af(x) +bg(x)] = alim,_ f(x) +
blim,_,. g(x)

Producto: lim,_,.[f(x)-g(x)] = lim,_ f(x) - limy_. g(x)

Cociente: lim,_,, LX; — limse f(x) g(x) #0

x) — limyeg(x)?

u
oq

Potencia: lim,_,.[f(x)]" = [lim,—. f(x)]"

3.2.4 Limites al infinito

Cuando x tiende al infinito, el limite describe el comporta-
miento asintético de la funcidn:

1
Ilim—-=0
X—o0 X

3.3 Calculo de limites con Python

La biblioteca SymPy de Python permite realizar célculos
simbdlicos de limites. A continuacion, se presentan 10 ejem-
plos de célculo de limites con explicaciones.

3.3.1 Ejemplo 1: Limite basico
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from sympy import symbols, limit

x = symbols(’x’)
limite = limit(x**2, x, 2)
print(£"L\’imite de x~2 cuando x tiende a 2: {limitel}")

3.1: Limite basico

3.3.2 Ejemplo 2: Limite al infinito

from sympy import oo

limite = 1limit(1/x, x, oo)
print(£"L\’imite de 1/x cuando x tiende a infinito:
{limite}")

3.2: Limite al infinito

3.3.3 Ejemplo 3: Limite lateral por la derecha

limite_derecha = limit(1/x, x, 0, dir=’+’)
print(f"Limite por la derecha de 1/x cuando x tiende a O:
{limite_derechal}")

3.3: Limite lateral

3.3.4 Ejemplo 4: Limite lateral por la izquierda
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limite_izquierda = limit(1/x, x, 0, dir=’-’)
print(f"Limite por la izquierda de 1/x cuando x tiende a
0: {limite_izquierdal}")

3.4: Limite lateral

3.3.5 Ejemplo 5: Limite de una funcién racional

limite = limit((x**2 - 4)/(x - 2), x, 2)
print(£"L\’imite de (x°2 - 4)/(x - 2) cuando x tiende a
2: {limite}")

3.5: Limite de funcion racional

3.3.6 Ejemplo 6: Limite de una funcion trigonométri-
ca

from sympy import sin

limite = limit(sin(x)/x, x, 0)
print(£"L\’imite de sin(x)/x cuando x tiende a 0:
{limite}")

3.6: Limite trigonométrico

3.3.7 Ejemplo 7: Limite al infinito de una exponencial

59




N

[ N

N N

from sympy import exp

limite = limit(exp(-x), x, 0o0)
print(£"L\’imite de exp(-x) cuando x tiende a infinito:
{limite}")

3.7: Limite exponencial

3.3.8 Ejemplo 8: Limite con una funcion definida por
tramos

from sympy import Piecewise

f = Piecewise((x**2, x < 0), (x, x >= 0))
limite = limit(f, x, 0, dir=’+’)

print(£"L\’imite de una funci\’on por tramos: {limitel}")

3.8: Funcién por tramos

3.3.9 Ejemplo 9: Limite con raices cuadradas

from sympy import sqrt

limite = limit(sqrt(x) - 2, x, 4)
print(£"L\’imite de sqrt(x) - 2 cuando x tiende a 4:
{limite}")

3.9: Limite con raices cuadradas

3.3.10 Ejemplo 10: Limite de una funcion logaritmica
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from sympy import log

limite = limit(log(x), x, 1)
print(£"L\’imite de log(x) cuando x tiende a 1: {limite}")

3.10: Limite logaritmico

3.4 Aplicacion del calculo de limites: tasa de
crecimiento al inicio del cultivo

En acuicultura, es comun modelar el crecimiento inicial de
peces con funciones cuadréticas o exponenciales. El cdlcu-
lo de limites permite estimar la tasa de crecimiento en los
primeros dias.

Aplicacion en Acuicultura

Supongamos que el crecimiento de la masa corporal de un
grupo de alevines de tilapia estd modelado por la funcién:

f(t)=0,12 40,5t

donde f(¢) es la masa (en gramos) al dia 7. Se desea co-
nocer la tasa de crecimiento instantdneo justo al iniciar el
cultivo, es decir, cuando ¢ — 0.

Problema

Calcular el siguiente limite:
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o SO = 10)
t—0 t

Solucion Manual

1. £(0) =0,1(0)>+0,5(0) =0
2, [O=SO0) _ 0IPH0S120 _ 1,4 5

3. Tomar el limite: 1im,_,¢(0,1¢ +0,5) = 0,5

Codificacion en Python

from sympy import symbols, limit

t = symbols(’t’)

f = 0.1%t**2 + 0.b*t

limite = limit((f - f.subs(t, 0))/t, t, 0)
print(£"E1l limite es: {limitel}")

3.11: Célculo de limite simbdlico con SymPy

Reflexion Didactica

Este tipo de limite representa la derivada en ¢t = 0O, interpre-
tada como la tasa de cambio inicial. Es clave en el andlisis
de crecimiento en biologia y acuicultura.

Conclusion del capitulo

El calculo de limites es una herramienta clave en el analisis
matemadtico y la programacion simbdlica. Utilizar Python
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y SymPy para calcular limites facilita la comprension de
conceptos abstractos y permite explorar una amplia gama
de funciones y comportamientos. Esta metodologia forta-
lece la capacidad analitica del estudiante y sirve como base
para los temas siguientes: derivacion, continuidad y andli-
sis de funciones.

63



4 Derivacion de Funciones de Variable Real

Objetivos especificos del capitulo

= Comprender el concepto de derivada como tasa de
cambio y su interpretacion geométrica y fisica.

= Aplicar reglas de derivacién para resolver proble-
mas simbdlicos y contextuales con funciones alge-
braicas, trigonométricas y compuestas.

= Utilizar Python y la biblioteca SymPy para calcular
derivadas, analizar puntos criticos y modelar situa-
ciones reales.

= Resolver problemas de optimizacién y determinar
puntos de inflexion en funciones, aplicando deriva-
das a contextos como la fisica y la acuicultura.

4.1 Introduccion

La derivacion es una operacion fundamental en el cdlculo
diferencial que mide la tasa de cambio de una funcién res-
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pecto a su variable independiente. Este concepto permite
analizar el comportamiento local de una funcién, determi-
nar puntos criticos, y resolver problemas de optimizacion
en diversas areas de la ciencia y la ingenieria.

4.1.1 Definicion de la Derivada

La derivada de una funcién f(x) en un punto x = a se de-
fine como el limite:

/ :lf
fa) = lim

flat+h)—f(a)
h

Este limite, si existe, representa la pendiente de la recta
tangente a la curva de f(x) en el punto (a, f(a)).
4.1.2 Reglas Fundamentales de Derivacion

Algunas reglas importantes para calcular derivadas son:

= Regla de la Potencia: £ [x"] =n-x""!

= Regla del Producto: L[u-v]=u'-v+u-V

' v—u

= Regla del Cociente: % (4] = =

= Regla dela Cadena: 7 [f(s(x))] = f'(s(x)) &' (x)

4.1.3 Aplicaciones de la Derivada

La derivada se utiliza en una variedad de aplicaciones, in-
cluyendo:
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= Determinar la pendiente de una curva.

= [dentificar puntos criticos y clasificar extremos loca-
les.

= Resolver problemas de optimizacion.
= Analizar la concavidad y los puntos de inflexion de

una funcion.

4.2 Calculo de Derivadas con Python

La biblioteca SymPy en Python permite calcular derivadas
simbolicas y evaluarlas en puntos especificos. A continua-
cién, se presentan ejemplos resueltos con Python.

4.2.1 Problemas de Derivadas en Fisica

Velocidad como la Derivada de la Posicion

from sympy import symbols, diff

# Posici|’on en funcil’on del tiempo
x, t = symbols(’x t’)

posicion = Bkt**2 + 3%t + 2
velocidad = diff(posicion, t)
print(f"Velocidad: {velocidad}")

4.1: Velocidad como la derivada de la posicion
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Aceleracion como la Derivada de la Velocidad

# Aceleraci|\’on como la segunda derivada de la posicil|’on
aceleracion = diff(velocidad, t)

print(f"Aceleraci\’on: {aceleracion}")

4.2: Aceleracion como la derivada de la velocidad

Ley de Hooke: Fuerza como Derivada de la Energia

AW =

k, x = symbols(’k x’)
energia_potencial = 1/2 * k * x*x2
fuerza = -diff(energia_potencial, x)

print (f"Fuerza: {fuerzal}")

4.3: Ley de Hooke

Ley de Enfriamiento de Newton

[ N

T, t = symbols(’T t?)

constante = symbols(’k’)

temperatura = T * exp(-constante * t)
derivada_temperatura = diff(temperatura, t)
print(f"Tasa de cambio de la temperatura:

{derivada_temperatura}")

4.4: Velocidad de enfriamiento

Movimiento Circular: Velocidad Angular
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theta, t = symbols(’theta t’)

movimiento = theta**3 - 4*theta + 6
derivada_angular = diff(movimiento, t)
print(f"Velocidad angular: {derivada_angular}")

4.5: Velocidad angular

4.3 Conclusion

La derivacion de funciones es esencial para modelar y re-
solver problemas en fisica. Python, con SymPy, facilita el
calculo y la interpretacion de derivadas, permitiendo apli-
caciones practicas en diversas disciplinas.

4.3.1 Problemas de Derivadas en Fisica

Velocidad como la Derivada de la Posicion

from sympy import symbols, diff

# Posici|’on en funcil’on del tiempo
X, t = symbols(’x t’)

posicion = bB¥t*%2 + 3%t + 2
velocidad = diff(posicion, t)
print(£f"Velocidad: {velocidad}")

4.6: Velocidad como la derivada de la posicion

Aceleracion como la Derivada de la Velocidad
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# Adceleraci|’on como la segunda derivada de la posici|’on
aceleracion = diff(velocidad, t)

print(f"Aceleraci\’on: {aceleracion}")

4.7: Aceleracion como la derivada de la velocidad

Ley de Hooke: Fuerza como Derivada de la Energia

k, x = symbols(’k x’)
energia_potencial = 1/2 * k * x*x2
fuerza = -diff(energia_potencial, x)

print (f"Fuerza: {fuerzal}")

4.8: Ley de Hooke

Ley de Enfriamiento de Newton

T, t = symbols(’T t?)

constante = symbols(’k’)

temperatura = T * exp(-constante * t)
derivada_temperatura = diff(temperatura, t)
print(f"Tasa de cambio de la temperatura:

{derivada_temperatura}")

4.9: Velocidad de enfriamiento

Movimiento Circular: Velocidad Angular
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theta, t = symbols(’theta t’)

movimiento = theta**3 - 4*theta + 6
derivada_angular = diff(movimiento, t)
print(f"Velocidad angular: {derivada_angular}")

4.10: Velocidad angular

4.4 Conclusion

La derivacion de funciones es esencial para modelar y re-
solver problemas en fisica. Python, con SymPy, facilita el
calculo y la interpretacion de derivadas, permitiendo apli-
caciones practicas en diversas disciplinas.

4.5 Calculo de Maximos y Minimos

4.5.1 Teoria

Para determinar los maximos y minimos de una funcién
f(x), se utilizan las siguientes herramientas basadas en la
derivada:

Primera Derivada

La primera derivada f”(x) se utiliza para encontrar los pun-
tos criticos, que son aquellos valores de x donde f/(x) =0
o f'(x) no esté definida.
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Segunda Derivada

La segunda derivada f”(x) ayuda a clasificar los puntos
criticos:

» Si f”(x) > 0, el punto critico es un minimo local.
= Si f”(x) <0, el punto critico es un méximo local.

= Si f(x) =0, el criterio es inconcluso.

4.5.2 Pasos para Calcular Maximos y Minimos

1. Calcular la primera derivada f’(x).

2. Resolver f’(x) = 0 para encontrar los puntos criti-
Cos.

3. Calcular la segunda derivada f”(x).

4. Evaluar f”(x) en cada punto critico para clasificarlo
Ccomo maximo o minimo.

4.6 Ejemplos con Python

A continuacién se presentan 10 ejemplos resueltos utili-
zando Python para calcular maximos y minimos.

4.6.1 Ejemplo 1: Maximo de una Parabola
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from sympy import symbols, diff, solve

x = symbols(’x’)

funcion = -x**2 + 4%x + 5

primera_derivada = diff(funcion, x)
puntos_criticos = solve(primera_derivada, x)
segunda_derivada = diff(funcion, x, 2)

for punto in puntos_criticos:
clasificacion = "M\’aximo" if segunda_derivada.subs(x,
punto) < 0 else "M\’inimo"

print(£"Punto cr\’itico en x={punto}: {clasificacion}")

4.6.2

4.11: Maximo de una pardbola

Ejemplo 2: Minimo de una Parabola

funcion = x**2 - 6%x + 8
primera_derivada = diff(funcion, x)
puntos_criticos = solve(primera_derivada, x)

segunda_derivada = diff(funcion, x, 2)

for punto in puntos_criticos:

clasificacion = "M\’aximo"” if segunda_derivada.subs(x,
punto) < O else "M\’inimo"

print(£"Punto cr\’itico en x={puntol}: {clasificacion}")

4.6.3

4.12: Minimo de una pardbola

Ejemplo 3: Funciones Trigonométricas
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from sympy import sin

funcion = sin(x)

primera_derivada = diff(funcion, x)
puntos_criticos = solve(primera_derivada, x)
segunda_derivada = diff(funcion, x, 2)

print(£"Puntos cr\’iticos: {puntos_criticos}")

for punto in puntos_criticos:

print(f"Segunda derivada en x={punto}:
{segunda_derivada.subs(x, punto)}")

4.6.4

4.13: Funciones trigonométricas

Ejemplo 4: Clasificacion con Segunda Derivada

funcion = x**3 - 3kx**%2 - 9%x + 27
primera_derivada = diff(funcion, x)
puntos_criticos = solve(primera_derivada, x)
segunda_derivada = diff(funcion, x, 2)

for punto in puntos_criticos:
print(£"x={punto}, f’’(x)={segunda_derivada.subs(x,
punto)}")

4.6.5

4.14: Clasificacién con segunda derivada

Ejemplo 5: Optimizacién de un Producto
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funcion = x**2 * (10 - x)

primera_derivada = diff(funcion, x)
puntos_criticos = solve(primera_derivada, x)
segunda_derivada = diff(funcion, x, 2)

for punto in puntos_criticos:
print(£"Punto cr\’itico en x={punto},
£’?(x)={segunda_derivada.subs(x, punto)}")

4.6.6

4.15: Optimizacién de un producto

Ejemplo 6: Problema de Fisica

funcion = -5*x**2 + 20%x
primera_derivada = diff(funcion, x)
puntos_criticos = solve(primera_derivada, x)

segunda_derivada = diff(funcion, x, 2)

print (£"Puntos cr\’iticos: {puntos_criticos}")

for punto in puntos_criticos:

clasificacion = "M\’aximo"” if segunda_derivada.subs(x,
punto) < 0 else "M\’inimo"

print(£"Punto cr\’itico en x={punto}: {clasificacion}")

4.7

4.16: Problema fisico

Conclusion

El cédlculo de maximos y minimos utilizando la primera y

segunda derivada es una herramienta poderosa para anali-

zar el comportamiento de funciones y resolver problemas

de optimizacion.
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4.8 Calculo de Puntos de Inflexion

4.8.1 Teoria

Un punto de inflexién es un punto en el que una funcién
cambia la concavidad, es decir, pasa de ser concava hacia
arriba (f”(x) > 0) a céncava hacia abajo (f”(x) < 0) o vi-
ceversa. Para determinar los puntos de inflexion se siguen
los siguientes pasos:

1. Calcular la segunda derivada f”(x).

2. Resolver f”(x) = 0 para encontrar los puntos candi-
datos.

3. Verificar el cambio de signo de f”(x) en los interva-
los alrededor de los puntos candidatos.

4.8.2 Pasos para Identificar Puntos de Inflexion

» Concavidad hacia arriba: f”(x) > 0.

» Concavidad hacia abajo: /" (x) < 0.

Si la concavidad cambia en un punto candidato, ese punto
es un punto de inflexion.

4.9 Ejemplos con Python

4.9.1 Ejemplo 1: Punto de Inflexién de una Cibica
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from sympy import symbols, diff, solve

x = symbols(’x’)
funcion = x**3 - 3kx*%2 + 4
segunda_derivada = diff(funcion, x, 2)

puntos_candidatos = solve(segunda_derivada, x)

print(f"Puntos candidatos: {puntos_candidatos}")
for punto in puntos_candidatos:

signo_antes = segunda_derivada.subs(x, punto - 1)
signo_despues = segunda_derivada.subs(x, punto + 1)
if signo_antes * signo_despues < O:

print(f"Punto de inflexi\’on en x={puntol}")

4.9.2

4.17: Punto de inflexion de una cubica

Ejemplo 2: Punto de Inflexion de una Funcién
Trigonométrica

from sympy import sin

funcion = sin(x)
segunda_derivada = diff(funcion, x, 2)

puntos_candidatos = solve(segunda_derivada, x)

print(f"Puntos candidatos: {puntos_candidatos}")
for punto in puntos_candidatos:

print(f"x={punto}, segunda derivada cambia de signo")

4.18: Punto de inflexién de una funcién trigonométrica

4.9.3 Ejemplo 3: Clasificacion de Puntos Candidatos
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funcion = x**4 - 4kx*%2
segunda_derivada = diff(funcion, x, 2)

puntos_candidatos = solve(segunda_derivada, x)

for punto in puntos_candidatos:
valor_antes = segunda_derivada.subs(x, punto - 1)
valor_despues = segunda_derivada.subs(x, punto + 1)

if valor_antes * valor_despues < O:

print(f"Punto de inflexi\’on en x={puntol}")

4.19: Clasificacion de puntos candidatos

4.9.4 Ejemplo 4: Funcion con Raices

[ Y N U N

from sympy import sqrt

funcion = sqrt(x**3)

segunda_derivada = diff(funcion, x, 2)
puntos_candidatos = solve(segunda_derivada, x)
print(f"Puntos candidatos: {puntos_candidatos}")

4.20: Funcion con raices cuadradas

4.10 Aplicacion de derivadas: optimizacion del
uso de alimento

En acuicultura, el uso eficiente del alimento es clave pa-
ra maximizar el crecimiento de los peces y minimizar los
costos. La derivada permite encontrar el punto donde se
maximiza la ganancia de peso respecto a la cantidad de
alimento suministrado.
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Aplicacion en Acuicultura

Supongamos que la ganancia de peso de una poblacién de
peces, en gramos, depende de la cantidad de alimento su-
ministrado x en kilogramos, segtn la funcién:

G(x) = —2x* + 12x

Se desea encontrar la cantidad de alimento x que maximiza
la ganancia de peso.

Problema

Determinar el valor de x que maximiza G(x) usando deri-
vadas.

Solucion Manual
» Derivada: G'(x) = —4x+ 12
» Jgualaracero: —4x+12=0=x=3

» Segunda derivada: G”(x) = —4 < 0 — méximo lo-
cal.

Entonces, la cantidad 6ptima de alimento es de 3 kg.

Codificacion en Python
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from sympy import symbols, diff, solve

o]
]

symbols(’x’)
G = -2¥x*%2 + 12%x

G_derivada = diff(G, x)

critico = solve(G_derivada, x)[0]
segunda = diff(G, x, 2)

print(£"Valor critico: x = {critico}")
print(f"Segunda derivada: G’’(x) = {segunda}")

4.21: Calculo del méximo de ganancia de peso

Reflexion Didactica

Este ejemplo muestra como usar derivadas para optimizar
recursos. En acuicultura, este tipo de andlisis puede apli-
carse a la alimentacion, temperatura, oxigeno, etc.

Conclusiones

En este capitulo se ha demostrado cémo la derivada, enten-
dida como tasa de cambio, es una herramienta fundamen-
tal para el andlisis de variaciones en contextos reales. Su
aplicacion en el &mbito de la acuicultura permite optimizar
procesos esenciales como la alimentacion, el crecimiento
de los organismos y la gestion de recursos.

A través de ejemplos contextualizados y su codificacion
en Python, los estudiantes pudieron identificar puntos cri-
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ticos en funciones, clasificar maximos y minimos locales,
y validar sus hallazgos con el uso de la segunda deriva-
da. Esta aproximacién no solo fortalece el razonamiento
matematico, sino que también promueve el pensamiento
computacional y la toma de decisiones basadas en mode-
los cuantitativos.

El uso de bibliotecas como SymPy, y la integracién de
Python en el proceso de aprendizaje, ha facilitado el tra-
tamiento simbodlico de derivadas, reforzando la conexién
entre teoria y practica. En resumen, este capitulo consolida
las bases del cdlculo diferencial orientadas a la resolucién
de problemas reales en el &mbito acuicola.
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5 La Integral Indefinida

Objetivos del capitulo

= Comprender el concepto de integral indefinida y sus
propiedades fundamentales.

= Aplicar las reglas de integracion a funciones comu-
nes.

= Utilizar Python (SymPy) para calcular integrales sim-
bolicas.

= Resolver problemas aplicados en contexto agrope-
cuario con integrales.

5.1 Introduccion

La integral indefinida es uno de los conceptos fundamenta-
les del célculo integral. Representa el conjunto de todas las
primitivas de una funcién dada y se denota generalmente
por:

/f(x) dx
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Donde f(x) es la funcién integranda y dx indica que la
integral se toma con respecto a la variable x. El resultado
de una integral indefinida incluye una constante de inte-
gracion C, ya que las primitivas difieren entre si por una
constante.

5.2 Teoria de la Integral Indefinida

5.2.1 Definicion

La integral indefinida de una funcién f(x) es una funcién
F(x) tal que F'(x) = f(x). Es decir:

5.2.2 Propiedades de la Integral Indefinida
» Linealidad: [[af(x)+bg(x)|dx=a [ f(x)dx+b [ g(x)dx.

= Constante por fuera: [cf(x)dx=c [ f(x)dx, don-
de ¢ es una constante.

= Suma de integrales: [[f(x)+g(x)]dx= [ f(x)dx+
J 8(x)dx.
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5.2.3 Integrales Comunes

/exdx:ex—kC
1
/—dx=1n|xy+c
X
/sin(x)dx:—cos(x)-l-C

/ cos(x)dx = sin(x) +C

5.3 Calculo de Integrales Indefinidas con Python

La biblioteca SymPy en Python proporciona herramientas
para realizar calculos simbdlicos de integrales indefinidas.
A continuacién se presentan 10 ejemplos resueltos.

5.3.1 Ejemplo 1: Integral de una Potencia

from sympy import symbols, integrate

x = symbols(’x’)

funcion = x**3

resultado = integrate(funcion, x)
print(£"Integral de x~3: {resultadol}")

5.1: Integral de una potencia
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5.3.2 Ejemplo 2: Integral de una Suma

funcion = x**2 + 3*x + b
resultado = integrate(funcion, x)
print(f"Integral de x°2 + 3x + 5: {resultado}")

5.2: Integral de una suma

5.3.3 Ejemplo 3: Integral Exponencial

[ N T S

from sympy import exp

funcion = exp(x)
resultado = integrate(funcion, x)
print(f"Integral de e~x: {resultadol}")

5.3: Integral exponencial

5.3.4 Ejemplo 4: Integral Logaritmica

L T S

from sympy import log

funcion = log(x)
resultado = integrate(funcion, x)
print(f"Integral de log(x): {resultadol}")

5.4: Integral logaritmica

5.3.5 Ejemplo 5: Integral Trigonométrica
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from sympy import sin

funcion = sin(x)
resultado = integrate(funcion, x)
print(f"Integral de sin(x): {resultadol}")

5.3.6

5.5: Integral trigonométrica

Ejemplo 6: Integral por Partes

from sympy import cos

funcion = x * cos(x)
resultado = integrate(funcion, x)
print(f"Integral de x*cos(x): {resultadol}")

5.3.7

5.6: Integral por partes

Ejemplo 7: Integral de una Raiz Cuadrada

from sympy import sqrt

funcion = sqrt(x)
resultado = integrate(funcion, x)

print(f"Integral de sqrt(x): {resultado}")

5.3.8

5.7: Integral de una raiz cuadrada

Ejemplo 8: Integral de una Funcién Racional
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funcion = 1/(x**2 + 1)
resultado = integrate(funcion, x)
print(f"Integral de 1/(x"2 + 1): {resultadol}")

5.8: Integral de una funcién racional

5.3.9 Ejemplo 9: Integral de un Producto

funcion = x * exp(-x**2)
resultado = integrate(funcion, x)
print(f"Integral de x*exp(-x~2): {resultado}")

5.9: Integral de un producto

5.3.10 Ejemplo 10: Integral con Constantes

N N

¢ = symbols(’c’)

funcion = ¢ * x**2

resultado = integrate(funcion, x)
print(f"Integral de c*x~2: {resultadol}")

5.10: Integral con constantes

Conclusiones

La integral indefinida es esencial en la comprension del
cambio acumulativo. Python, a través de SymPy, permi-
te un enfoque didactico para su cdlculo. Esta herramienta
permite a los estudiantes resolver problemas simbdlicos de
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forma clara, reforzando el aprendizaje de los fundamentos
del célculo.

5.4 Aplicacion de integrales: acumulacion de
biomasa

La integral indefinida permite calcular funciones acumu-
lativas. En acuicultura, puede emplearse para estimar la
biomasa acumulada en funcién del tiempo a partir de una
tasa de crecimiento conocida.
Aplicacion en Acuicultura
Supongamos que la tasa de crecimiento de biomasa de una
poblacién de peces estd dada por la funcion:

g(t) =3t>+2t (gramos por dia)
donde 7 es el tiempo en dias. Se desea conocer la funcién
que representa la biomasa acumulada desde el dia cero.
Problema
Calcular la integral indefinida de g(¢) para obtener la fun-
cién de biomasa acumulada B(r).

Solucion Manual

w [g(t)dt = [(3t2+2t)dt =>+1>+C
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La funcién B(t) = t> + 1> + C representa la biomasa acu-
mulada (en gramos), con C como constante de integracion.

Codificacion en Python

from sympy import symbols, integrate

t
g

symbols(’t’)
3ktkx2 + 2%t

B = integrate(g, t)
print(£"Funcion de biomasa acumulada: B(t) = {B} + C")

5.11: Célculo de integral indefinida con SymPy

Reflexion Didactica

Este tipo de modelos ayuda a predecir el crecimiento acu-
mulado a lo largo del tiempo y a planificar actividades co-
mo la cosecha, el manejo de densidades y la alimentacion.
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6 La Integral Definida

Objetivos especificos del capitulo

= Interpretar la integral definida como 4rea neta bajo
una curva y su significado geométrico.

= Aplicar el teorema fundamental del cdlculo para eva-
luar integrales definidas de funciones continuas.

= Utilizar Python y SymPy para resolver integrales de-
finidas simbdlica y numéricamente.

= Resolver problemas aplicados relacionados con éreas,
volimenes y acumulacién en contextos agropecua-
rios.

6.1 Introduccion

La integral definida es un concepto central en el célculo
integral, utilizado para calcular dreas bajo la curva, entre
otras aplicaciones. Una integral definida de una funcion
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continua f(x) en el intervalo [a,b] se expresa como:

[ sy

a

Donde:
= ¢ es el limite inferior de integracion.
= ) es el limite superior de integracion.
= f(x) es la funcién integranda.

El valor de la integral definida se interpreta como el drea
neta entre la funcion y el eje x en el intervalo dado.

6.2 Teoria de la Integral Definida

6.2.1 Definicion Formal

La integral definida se define como el limite de una suma
de Riemann:

Donde:
n Ax = bn;“ es el ancho de cada subintervalo.

» x} es un punto dentro del subintervalo [x;_1,x;].
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6.2.2 Teorema Fundamental del Calculo

El teorema fundamental del cdlculo conecta la integral de-
finida con la derivada:

1. Primera parte: Si F(x) es una primitiva de f(x),
entonces:

b
| fwdx=F(b)~F@
a
2. Segunda parte: Si f(x) es continua en |a, b, enton-

([ rwar) =5

6.3 Propiedades de la Integral Definida

CES:

JE f(x)dx = 0.
P fx)dx = — [{ f(x)dx.

Si f(x) > 0 en [a,b], entonces fff(x) dx > 0.

Linealidad: ff laf (x)+bg(x)]dx= afab f(x) dx+bf:g(x) dx.

6.4 Calculo de Integrales Definidas con Python

La biblioteca SymPy en Python facilita el cdlculo simbdli-
co y numérico de integrales definidas. A continuacion, se
presentan 10 ejemplos resueltos.
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6.4.1 Ejemplo 1: Integral de una Potencia

from sympy import symbols, integrate

x = symbols(’x’)
resultado = integrate(x**3, (x, 0, 2))
print(£"Integral de x~3 desde 0 hasta 2: {resultadol}")

6.1: Integral de una potencia

6.4.2 Ejemplo 2: Integral Exponencial

from sympy import exp

resultado = integrate(exp(x), (x, 1, 3))
print(f"Integral de e"x desde 1 hasta 3: {resultadol}")

6.2: Integral exponencial

6.4.3 Ejemplo 3: Integral Logaritmica

from sympy import log

resultado = integrate(log(x), (x, 1, 4))
print(f"Integral de log(x) desde 1 hasta 4: {resultadol}")

6.3: Integral logaritmica

6.4.4 Ejemplo 4: Integral Trigonométrica
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from sympy import sin

resultado = integrate(sin(x), (x, 0, 3.1416))
print(f"Integral de sin(x) desde O hasta pi: {resultado}")

6.4: Integral trigonométrica

6.4.5 Ejemplo 5: Integral de una Funcion Cuadratica

funcion = x**2 - 4*%x + 6

resultado = integrate(funcion, (x, -1, 3))

print(f"Integral de x°2 - 4x + 6 desde -1 hasta 3:
{resultadol}")

6.5: Integral de una funcion cuadrética

6.4.6 Ejemplo 6: Integral de una Funciéon Racional

funcion = 1/(x**2 + 1)

resultado = integrate(funcion, (x, 0, 1))

print(f"Integral de 1/(x"2 + 1) desde O hasta 1:
{resultadol}")

6.6: Integral de una funcién racional

6.4.7 Ejemplo 7: Area Bajo una Curva
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funcion = x**2

resultado = integrate(funcion, (x, 0, 5))

print(£"\uOOclrea bajo la curva x"2 desde O hasta 5:
{resultadol}")

6.7: Area bajo una curva

6.4.8 Ejemplo 8: Integral con Constantes

a, b = symbols(’a b?)

resultado = integrate(a*x**2 + b, (x, 1, 2))

print(f"Integral de a*x"2 + b desde 1 hasta 2:
{resultado}")

6.8: Integral con constantes

6.4.9 Ejemplo 9: Integral de una Funcion con Raices

from sympy import sqrt

funcion = sqrt(x)
resultado = integrate(funcion, (x, 0, 4))
print(f"Integral de sqrt(x) desde O hasta 4: {resultadol}")

6.9: Integral con raices cuadradas

6.4.10 Ejemplo 10: Integral de un Producto
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funcion = x * exp(-x**2)

resultado = integrate(funcion, (x, 0, 1))

print(f"Integral de x*exp(-x~2) desde O hasta 1:
{resultado}")

6.10: Integral de un producto

6.5 Conclusion

La integral definida es una herramienta poderosa para cal-
cular dreas netas y resolver problemas de acumulacion.
Con Python y SymPy, podemos abordar estos problemas
de manera eficiente y precisa.

6.6 Calculo de Areas y Volimenes

6.6.1 Calculo de Areas

El célculo de dreas bajo la curva es una aplicacién directa
de la integral definida. La integral:

Area = /ab|f(x)\dx

permite calcular el drea total, independientemente de si la
funcidn es positiva o negativa en el intervalo dado.

Ejemplo: 00clrea Bajo una Parabola
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from sympy import symbols, integrate

x = symbols(’x’)

funcion = x**2 - 4

resultado = integrate(abs(funcion), (x, -3, 3))

print(£"\uOOclrea bajo la curva x"2 - 4 entre -3 y 3:
{resultadol}")

6.11: Célculo del area bajo una pardbola

6.6.2 Calculo de Volumenes

El calculo de volumenes de sélidos de revolucion se realiza
mediante la técnica del disco o la técnica del anillo. Por
ejemplo, usando el eje x:

ver| "R

Ejemplo: Volumen de un Sélido de Revoluciéon

funcion = x**2

resultado = integrate(funcion**2 * 3.1416, (x, 0, 2))

print(£"Volumen del s\uOOf3lido de revoluci\u00f3n de x~2
entre 0 y 2: {resultadol}")

6.12: Volumen de un sélido de revolucion
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6.7 Calculo de Integrales Definidas con Python

La biblioteca SymPy en Python facilita el cdlculo simbdli-
co y numérico de integrales definidas. A continuacion, se
presentan 10 ejemplos resueltos.

6.7.1 Ejemplo 1: Integral de una Potencia

from sympy import symbols, integrate

x = symbols(’x’)
resultado = integrate(x**3, (x, 0, 2))
print(f"Integral de x~3 desde 0 hasta 2: {resultado}")

6.13: Integral de una potencia

6.7.2 Ejemplo 2: Integral Exponencial

from sympy import exp

resultado = integrate(exp(x), (x, 1, 3))
print(f"Integral de ex desde 1 hasta 3: {resultadol}")

6.14: Integral exponencial

6.8 Conclusion

El cdlculo de dreas y voliimenes amplia las aplicaciones de
la integral definida, permitiendo resolver problemas geo-
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métricos y fisicos. Python, a través de SymPy, ofrece he-
rramientas eficientes para abordar estos problemas.

6.9 Calculo de Areasy Volimenes

6.9.1 Calculo de Areas

El calculo de dreas bajo la curva es una aplicacién directa
de la integral definida. La integral:

Area = /ab\f(x)\dx

permite calcular el drea total, independientemente de si la
funcién es positiva o negativa en el intervalo dado.

Ejemplo: Areas Bajo una Paribola

from sympy import symbols, integrate

x = symbols(’x’)

funcion = x**2 - 4

resultado = integrate(abs(funcion), (x, -3, 3))

print(£"\uOOclrea bajo la curva x"2 - 4 entre -3 y 3:
{resultadol}")

6.15: Calculo del area bajo una parabola
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6.9.2 Calculo de Volumenes

El calculo de volimenes de sélidos de revolucion se realiza
mediante la técnica del disco o la técnica del anillo. Por

ejemplo, usando el eje x:
b
V—n [ [f)Pdx
a

Ejemplo: Volumen de un Sélido de Revoluciéon

funcion = x**2

resultado = integrate(funcion**2 * 3.1416, (x, 0, 2))

print(£"Volumen del s\uOOf3lido de revoluci\u0O0f3n de x~2
entre 0 y 2: {resultadol}")

6.16: Volumen de un sélido de revolucién

6.10 Calculo de Integrales Definidas con Python

La biblioteca SymPy en Python facilita el calculo simbdli-
co y numérico de integrales definidas. A continuacién, se
presentan 10 ejemplos resueltos.

6.10.1 Ejemplo 1: Integral de una Potencia
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from sympy import symbols, integrate

x = symbols(’x’)
resultado = integrate(x**3, (x, 0, 2))
print(f"Integral de x~3 desde 0 hasta 2: {resultadol}")

6.17: Integral de una potencia

6.10.2 Ejemplo 2: Integral Exponencial

from sympy import exp

resultado = integrate(exp(x), (x, 1, 3))
print(f"Integral de e"x desde 1 hasta 3: {resultado}")

6.18: Integral exponencial

6.11 Aplicacion de integrales: acumulacion de
biomasa

La integral indefinida permite calcular funciones acumu-
lativas. En acuicultura, puede emplearse para estimar la
biomasa acumulada en funcién del tiempo a partir de una
tasa de crecimiento conocida.

Aplicacion en Acuicultura

Supongamos que la tasa de crecimiento de biomasa de una
poblacion de peces estd dada por la funcién:
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g(t) =3t>+2t (gramos por dia)
donde ¢ es el tiempo en dias. Se desea conocer la funcidon
que representa la biomasa acumulada desde el dia cero.
Problema
Calcular la integral indefinida de g(r) para obtener la fun-

cién de biomasa acumulada B(r).

Solucion Manual

x [g(t)dt= [(B2+2t)dt =3 +1*+C

La funcién B(t) = t* + 1> + C representa la biomasa acu-
mulada (en gramos), con C como constante de integracion.

Codificacion en Python

from sympy import symbols, integrate

t
g

symbols(’t?)
3ktER*2 + 2kt

B = integrate(g, t)
print(f"Funcion de biomasa acumulada: B(t) = {B} + C")

6.19: Célculo de integral indefinida con SymPy
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Reflexion Didactica

Este tipo de modelos ayuda a predecir el crecimiento acu-
mulado a lo largo del tiempo y a planificar actividades co-
mo la cosecha, el manejo de densidades y la alimentacion.

Conclusion del capitulo

La integral definida permite resolver una amplia variedad
de problemas geométricos y fisicos. Con Python, estos con-
ceptos se exploran de forma accesible, consolidando la
comprension del cédlculo aplicado.
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7 Modelacion Matematica en Acuicultura

Objetivos del capitulo

= Comprender los fundamentos de la modelacién ma-
temadtica y su aplicacion en problemas reales.

= Aplicar modelos de regresion lineal simple a datos
experimentales en acuicultura.

= Utilizar técnicas de optimizacién para mejorar la efi-
ciencia en el uso de recursos acuicolas.

= Resolver problemas préicticos mediante programa-
cién en Python.

7.1 Introduccion

La modelacion matemadtica permite representar fendémenos
del mundo real mediante expresiones matematicas, facili-
tando el andlisis, la prediccion y la toma de decisiones. En
acuicultura, esta herramienta es clave para optimizar pro-
cesos como la alimentacidn, el crecimiento de especies y
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la gestion del entorno.

7.2 Regresion Lineal Simple

La regresion lineal simple permite modelar la relacién en-
tre dos variables cuantitativas. Por ejemplo, se puede ana-
lizar la relacién entre el peso de los peces y los dias de

cultivo.
Ejemplo: Relacién peso-tiempo

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

# Datos simulados: dias de cultivo y peso en gramos
dias = np.array([10, 20, 30, 40, 50, 60]).reshape(-1, 1)
peso = np.array([5, 15, 30, 45, 60, 80])

modelo = LinearRegression()
modelo.fit(dias, peso)

pendiente = modelo.coef_[0]

intercepto = modelo.intercept_

print(f"Modelo: peso = {pendiente:.2f} * dias +
{intercepto:.2f}")

# Grdifico

plt.scatter(dias, peso, color=’blue’, label=’Datos’)

plt.plot(dias, modelo.predict(dias), color=’red’,
label=’Recta de ajuste’)

plt.xlabel("Dias de cultivo")

plt.ylabel("Peso (g)")

plt.legend()

plt.title("Regresion lineal simple: Peso vs Dias")

plt.show()

7.1: Modelo de regresion lineal simple
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7.3

Optimizacion de Recursos en Acuicultura

La optimizacién permite encontrar condiciones que maxi-

mizan o minimizan una funcién objetivo, sujeta a ciertas

restricciones. Un ejemplo comun en acuicultura es optimi-

zar el uso del alimento para maximizar el crecimiento.

Ejemplo: Maximizar crecimiento con restriccion de ali-
mento

from scipy.optimize import minimize

# Funcion objetivo: crecimiento en funcion del alimento
(simplificada)
def crecimiento(alimento):

return -(-0.1xalimento**2 + 2*alimento)
resultado = minimize(crecimiento, x0=1, bounds=[(0, 20)])
print(f"Cantidad 6ptima de alimento (kg/dia):

{resultado.x[0]:.2f}")

print(f"Crecimiento estimado: {-resultado.fun:.2f} g")

7.2: Modelo de crecimiento con restriccion de alimento

7.4

Modelacion de Temperatura y Crecimien-
to

La temperatura del agua influye en el metabolismo de los

peces. Podemos modelar esta relacion para predecir el cre-

cimiento segin temperatura promedio.
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temperatura = np.array([20, 22, 24, 26, 28,
301) .reshape(-1, 1)
crecimiento = np.array([100, 120, 150, 170, 160, 140])

modelo = LinearRegression()

modelo.fit(temperatura, crecimiento)

plt.scatter(temperatura, crecimiento, color=’green’,
label=’Datos’)

plt.plot(temperatura, modelo.predict(temperatura),
color=’black’, label=’Modelo’)

plt.xlabel("Temperatura (\\textdegree C)")

plt.ylabel("Crecimiento (g/mes)")

plt.title("Relacidén entre temperatura y crecimiento")

plt.legend()

plt.show()

7.5

La modelacién matematica permite describir y predecir fe-
ndmenos naturales mediante funciones. En acuicultura, es
clave para proyectar el crecimiento de los peces a lo largo

7.3: Modelo de temperatura y crecimiento

Modelacion matematica: estimacion de cre-

cimiento con visualizacion

del tiempo.

Aplicacion en Acuicultura

Se ha observado que el crecimiento de una poblacion de

tilapias puede aproximarse con la funcion:
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P(r) = 15 4o—060 (kg por pez)

donde ¢ es el tiempo en semanas. Esta es una funcién lo-
gistica tipica en crecimiento poblacional.

Problema

1. Calcular el peso estimado por pez en la semana 10.

2. Graficar la funcién de crecimiento para ¢ € [0,20].
Solucién Manual

1. Sustituimos en la funcion:

5 5 5
P(10) = s ~ 40,0025 — 101 ~ 495 kg

Codificacion en Python
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import numpy as np

import matplotlib.pyplot as plt

plt

plt

plt.
.grid(True)

plt

plt.

np.linspace(0, 20, 100)
5/ (1 + 4 % np.exp(-0.6 * t))

.plot(t, P)
plt.
.xlabel("Semanas")

title("Crecimiento de tilapia")
ylabel("Peso (kg)")

show()

# Cdlculo en t = 10
peso_10 = 5 / (1 + 4 * np.exp(-0.6 * 10))
print(f"Peso estimado en la semana 10: {peso_10:.2f} kg")

7.4: Modelacién del crecimiento logistico

Reflexion Didactica

Este ejemplo integra célculo, funciones exponenciales y

visualizacion para interpretar datos reales. Fomenta el pen-

samiento sistémico y el andlisis predictivo aplicado a pro-

cesos bioldgicos.

7.6 Proyeccion futura del uso de Python en la
educacion STEM

La integracion de Python en el ambito educativo ha tras-

cendido la ensefianza bésica de programacion, consolidan-

dose como una herramienta fundamental en la educacion
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STEM (Ciencia, Tecnologia, Ingenieria y Matematicas).
Esta tendencia se ha intensificado con el avance de tecno-
logias emergentes como la inteligencia artificial, el andli-
sis de datos y la modelacion matemética, disciplinas donde
Python ocupa un lugar privilegiado por su sintaxis simple y
su robusto ecosistema de bibliotecas (Oliphant, 2006; Van-
derPlas, 2016).

Diversos estudios destacan el potencial de Python como
puente entre la teoria matemaética y la practica computacio-
nal, fomentando un aprendizaje activo, visual e interdisci-
plinario (Zayas-Batista, 2023). En particular, bibliotecas
como SymPy, NumPy y Matplotlib permiten abordar con-
ceptos abstractos como funciones, derivadas o integrales
desde una perspectiva interactiva, mejorando la compren-
sién y el pensamiento computacional.

En el contexto de la educaciéon matemética superior, Python
facilita el desarrollo de competencias clave del siglo XXI
como la resolucién de problemas, el anélisis de datos y la
alfabetizacion digital. La tendencia apunta hacia la adop-
ciéon de entornos de trabajo reproducibles como Jupyter
Notebooks, asi como la incorporacion de proyectos cola-
borativos y evaluacion automatizada (Martinez & Lopez,
2019).

La consolidacién de Python como lenguaje transversal en
disciplinas STEM sugiere que su uso en entornos educa-
tivos seguird en aumento, apoyando una ensefianza mas
contextualizada, abierta y orientada a la préctica.
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Conclusion del capitulo

La modelacién matemdtica, aplicada al contexto acuicola,
permite extraer conclusiones valiosas a partir de datos y
tomar decisiones informadas. Mediante regresion lineal y
optimizacion, es posible predecir comportamientos y me-
jorar procesos como la alimentacién y el crecimiento de
especies. Python facilita esta tarea al proporcionar herra-
mientas accesibles para el andlisis numérico y visualiza-

cion.
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Fundamento teérico y enfoque pedagogico del
libro

La ensefianza de las matematicas en educacion superior
enfrenta hoy el desafio de combinar solidez conceptual con
herramientas tecnoldgicas que favorezcan la comprension
y motivacién de los estudiantes. Este libro propone el uso
del lenguaje de programacion Python como recurso didéc-
tico para fortalecer la formacion matematica, integrando
calculos simbdlicos, graficos interactivos y automatizacion
de procesos algebraicos.

Diversas investigaciones respaldan este enfoque. Por ejem-
plo, se ha demostrado que la integracion de asistentes ma-
tematicos (como los que se pueden construir con Python
y SymPy) mejora significativamente la comprensién de
conceptos clave en carreras técnicas (Zayas-Batista, 2023).
Ademds, la incorporacion de tecnologias moéviles y cues-
tionarios interactivos en clase ha sido identificada como
una estrategia eficaz para aumentar la motivacién y mejo-
rar el rendimiento de los estudiantes en matematicas (Ma-
sero Moreno, Sanchez-Garcia & Pérez Rodriguez, 2019).
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Desde un punto de vista didactico, el desarrollo de la crea-
tividad ha sido identificado como un objetivo esencial de la
educacion matemdtica contemporanea. Promover entornos
donde los estudiantes construyan conocimiento mediante
resolucion de problemas, exploracién grafica y modela-
cién numérica es una necesidad pedagégica ampliamente
documentada (Arteaga Valdés & Suérez Padrén, 2016).
Asimismo, los enfoques de ensefianza problémica centra-
dos en la construccién activa del conocimiento por parte
del estudiante son fundamentales en el contexto universi-
tario actual (Valdés Capote & Gonzélez Pérez, 2018). En
este libro, se propone una secuencia de actividades y ejer-
cicios que estimulan el razonamiento l6gico y la toma de
decisiones, aprovechando las capacidades de automatiza-
cién y visualizacion que ofrece Python.

Finalmente, se reconoce la necesidad de repensar el uso
de la informadtica en la clase de matematicas. Las propues-
tas tradicionales ya no son suficientes para responder a los
contextos actuales, y es imprescindible incorporar nuevas
herramientas tecnoldgicas de forma significativa y peda-
gbégicamente fundamentada (Vargas Quifionez, 2017).
Este enfoque no solo responde a las demandas metodoldgi-
cas modernas, sino que también ha sido puesto en prictica
y retroalimentado en escenarios reales de aula, como se
detalla en la siguiente seccion.
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Aplicacion del material en el aula y reflexion
metodologica

El contenido de este libro fue concebido y validado en el
contexto real de clases impartidas por el autor en la carrera
de Acuicultura de la Facultad de Ciencias Agropecuarias
de la Universidad Técnica de Machala. Esta experiencia
permitié probar de manera directa los capitulos, ejemplos
y actividades propuestas, dentro de un entorno de forma-
cién profesional en ciencias aplicadas.

El uso de Python en las clases de matemdticas permitié
abordar temas complejos como funciones, derivadas, inte-
grales y modelamiento de datos de forma mas visual, in-
teractiva y comprensible. Las précticas con herramientas
como SymPy, Matplotlib y Pandas se integraron a sesio-
nes de clase habituales, donde los estudiantes desarrolla-
ron competencias tanto matematicas como digitales.
Durante el proceso, se observé una mejora notable en la
participacion de los estudiantes y en su comprension con-
ceptual, especialmente al trabajar con visualizacion grafica
de funciones y simulacién de datos. Ademas, el enfoque
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practico y contextualizado al drea de acuicultura resultd
motivador y util para los estudiantes, que lograron ver la
utilidad directa del cdlculo en su futura profesion.

Como resultado de esta implementacion, se realizaron ajus-
tes al material inicial, incluyendo mds ejemplos guiados,
problemas contextualizados a biologia marina y ejercicios
enfocados en la interpretacion de gréficos y datos reales.
Esta retroalimentacion directa del aula ha contribuido a en-
riquecer la calidad didactica del libro.
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