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Capítulo 1: 
Integrales 

indefinidas y 
definidas
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1.1. Integrales indefinidas de funciones algebraicas y trigonométricas. 

En cálculo diferencial nos han dado una función, f(x), y nos han preguntado cuál era 
la derivada de esta función. A partir de esta sección se dará la vuelta a las cosas. 

Definición: Dada una función, !(#), una antiderivada de f(x) es cualquier función 
F(x) tal que: 

%!(#) = !(#) 

 
Si %(#) es cualquier antiderivada de !(#) entonces la antiderivada más general de 
!(#) se llama integral indefinida y se denota como,  

'!(#)(# = %(#) + * 

donde, * es una constante arbitraria. 

 
En esta definición el ∫ se denomina símbolo de la integral, !(#) se denomina el 
integrando, # se denomina variable de integración y el valor " c " se denomina la 
constante de integración. 

En ocasiones, se dirá simplemente "integral" en lugar de "integral indefinida" (o 
"integral definida", cuando se trate del tema). A partir del contexto del problema es 
evidente que se trata de una integral indefinida (o una integral definida). 

El proceso de encontrar la integral indefinida se llama integración o integración de 
f(x). En caso de necesitar especificar la variable de integración, se dirá que se está 
integrando f(x) con respecto a x. A continuación, se denotan los teoremas de las 
integrales indefinidas: 

Teorema 1.1: 

'(, = , + * 

Teorema 1.2: 

'-(, = -'(, = -, + * 

Teorema 1.3: Si !" y !# están definidas en el mismo intervalo entonces, 

'[!"(#) ± !#(#)](# = '!"(#)(# ± '!#(#)(# 
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Teorema 1.4: Si 1 es un número racional, 

',$(, =
,$%"

1 + 1
+ * =

1
1 + 1

,$%" + *,	si	1 ≠ −1 

En los siguientes ejercicios, se aplica el Teorema 1.3 para descomponer cada integral 
en la suma o diferencia de integrales individuales, lo que permite abordar cada 
término por separado. Posteriormente, se utilizan los teoremas 1.4 y 1.2 para 
evaluar las integrales indefinidas de manera inmediata. Evaluar las siguientes 
integrales indefinidas: 

1.'(## − 3)(# 

Solución: 

'(## − 3)(# = '##(# − 3'(# =
1
3
#& − 3# + * 

 

2.'(3#' − 2#&)(# 

Solución: 

'(3#' − 2#&)(# = 3'#'(# − 2'#&(# = 3 ∙
1
6
#( − 2 ∙

1
4
#) + *

=
1
2
#( −

1
2
#) + * 

 

3.'(4#& − 3## + 2#)(# 

Solución: 

'(4#& − 3## + 2#)(# = 4'#&(# − 3'##(# + 2'#(#

= 4 ∙
1
4
#) − 3 ∙

1
3
#& + 2 ∙

1
2
## + * = #) − #& + ## + * 

 

4.'?
1
2
@) +

1
4
@& − @A (@ 
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Solución: 

'?
1
2
@) +

1
4
@& − @A(@ =

1
2
'@)(@ +

1
4
' @&(@ − '@(@

=
1
2
∙
1
5
@' +

1
4
∙
1
4
@) −

1
2
@# + * =

1
10
@' +

1
16
@) −

1
2
@# + * 

 

5.'(5@& − 10@*( + 4)(@ 

Solución: 

'(5@& − 10@*( + 4)(@ = 5'@&(@ − 10'@*((@ + 4'(@

= 5 ∙
1
4
@) − 10 ∙

1
−5

@*' + 4@ + * =
5
4
@) + 2@*' + 4@ + * 

 

6.'(1 + 6D# − 10D))(D 

Solución: 

'(1 + 6D# − 10D))(D = '(D + 6'D#(D − 10'D)(D

= D + 6 ∙
1
3
D& − 10 ∙

1
5
D' + * = D + 2D& − 2D' + * 

 

7.'FG#& + G##
!

H(# 

Solución: 

'FG#& + G##
!

H (# = 'I#&/# + ##/&J(# = '#&/#(# +'##/&(#

=
2
5
#'/# −

3
5
#'/& + * 

 

8.'?#) −
1
2
#& +

1
4
# − 2A(# 
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Solución: 

'?#) −
1
2
#& +

1
4
# − 2A(# = '#)(# −

1
2
'#&(# +

1
4
'#(# − 2'(#

=
1
5
#' −

1
2
∙
1
4
#) +

1
4
∙
1
2
## − 2# + *

=
1
5
#' −

1
8
#) +

1
8
## − 2# + * 

 

9.'(M& + 1.8M# − 2.4M)(M 

Solución: 

'(M& + 1.8M# − 2.4M)(M = 'M&(M + 1.8'M#(M − 2.4'M(M

=
1
4
M) + 1.8 ∙

1
3
M& − 2.4 ∙

1
2
M# + *

=
1
4
M) + 0.6M& − 1.2M# + * 

 

10.'(N + 4)(2N + 1)(N 

Solución: 

'(N + 4)(2N + 1)(N = '(2N# + 9N + 4)(N = 2'N#(N + 9'N(N + 4'(N

= 2 ∙
1
3
N& + 9 ∙

1
2
N# + 4N + * =

2
3
N& +

9
2
N# + 4N + * 

 

11.'?
4 + 6N

√N
A(N 

Solución: 

'?
4 + 6N

√N
A(N = '?

4
N"/#

+
6N
N"/#

A (N = 4'N*"/#(N + 6'NN*"/#(N

= 4'N*"/#(N + 6'N"/#(N = 4 ∙ 2N"/# + 6 ∙
2
3
N&/# + * 
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'?
4 + 6N

√N
A(N = 8N"/# + 4N&/# + * = 8√# + 4GN& + * 

 

12.'?3G#&
"

+
7
#'
+

1

6√#
A(# 

Solución: 

'?3G#&
"

+
7
#'
+

1

6√#
A(# = '?3#&/) + 7#*' +

1
6
#*"/#A(#

= 3'#&/)(# + 7'#*'(# +
1
6
'#*"/#(#

= 3 ⋅
4
7
#,/) + 7 ⋅

1
−4

#*) +
1
6
⋅ 2#"/# + *

=
12
7
#,/) −

7
4
#*) +

1
3
#"/# + * 

 

13.'#I√#
! + √#

" J(# 

Solución:  

'#I√#
! + √#

" J(# = '#I#"/& + #"/)J(# = '##"/&(# +'##"/)(#

= '#)/&(# + '#'/)(# =
3
7
#,/& +

4
9
#-/) + * 

 

14.'IN + √N
! J(4 − N#)(N 

Solución: 

'IN + √N
! J(4 − N#)(N = 'IN + N"/&J(4 − N#)(N

= 'I4N − N& + 4N"/& − N,/&J(N

= 4'N(N −'N&(N + 4'N"/&(N −'N,/&(N

= 4 ∙
1
2
N# −

1
4
N) + 4 ⋅

3
4
N)/& −

3
10
N"./& + * 
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'IN + √N
! J(4 − N#)(N = 2N# −

1
4
N) + 3GN)

!
−
3
10

GN".
!

+ * 

 

15.'
27@& − 1

√@
! (@ 

Solución: 

'
27@& − 1

√@
! (@ = 'Q

27@&

@"/&
−

1
@"/&

R(@ = 27'@&@*"/&(@ − '@*"/&(@

= 27'@//&(@ −'@*"/&(@ = 27 ⋅
3
11
@""/& −

3
2
@#/& + *

=
81
11
@""/& −

3
2
@#/& + * 

 

16.'
#& − 2√#

#
(# 

Solución: 

'
#& − 2√#

#
(# = 'Q

#&

#
−
2#"/#

#
R(# = 'I## − 2#*"/#J(#

= '##(# − 2'#*"/#(# =
1
3
#& − 2 ∙ 2#"/# + *

=
1
3
#& − 4√# + * 

 

En los ejercicios resueltos (1 al 16) se aplicaron de manera inmediata los teoremas 
1.1 a 1.4 de integrales indefinidas sin utilizar algún método o técnica de integración. 
Más adelante se analiza el método de cambio de variable, y en el capítulo 2 se 
estudian las técnicas de integración. A continuación, se presentan ejercicios de 
aplicación básica de la antiderivada para calcular la ecuación de una curva en 
cualquier punto. 
 

17. En el punto (3, 2) está ubicado en una curva y en cualquier punto (#, M) en la 
curva, la tangente tiene una pendiente igual a 2# − 3. Determine la ecuación de 
la curva. 
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Solución: 

Recordemos que en cálculo diferencial la tangente a una curva en cualquier punto 
(#, M) representa a la derivada en ese punto, por tanto, 

(M
(#

= 2# − 3													 ⇒ 														(M = (2# − 3)(# 

Esta última expresión se denomina ecuación diferencial (en el capítulo 4 
profundizaremos en las ecuaciones diferenciales de primer orden). A continuación, 
integramos ambas partes como integrales indefinidas; por lo tanto: 

'(M = '(2# − 3)(# 

M = 2'#(# − 3'(# = 2 ⋅
1
2
## − 3# + * 

M = ## − 3# + * 

En esta última expresión se sustituye el punto (3, 2) que está ubicada en la curva, 
en consecuencia, calculamos la constante *,  

2 = 3# − 3(3) + *										 ⇒ 														* = 2	

Finalmente, la ecuación de la curva queda definida como, 

M = ## − 3# + 2	

	

18. La pendiente de la recta tangente en cualquier punto (#, M) de una curva es 3√#. 
Si el punto (9, 4) esta en la curva, obtenga una ecuación de dicha curva.  

Solución: 

Sabemos que la tangente a una curva en cualquier punto (#, M) representa a la 
derivada en ese punto, por tanto: 

(M
(#

= 3√# 																										⇒ 																	'(M = 3'#"/#(#	

M = 3 ⋅
2
3
#&/# + *	

M = 2G#& + *	
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Dado que la curva pasa por el punto (9, 4), sustituimos estas coordenadas en la 
expresión anterior: 

4 = 2I√9J
&
+ *										 ⇒ 														4 = 2(3)& + *	

* = −50	

Finalmente, la ecuación de la curva queda definida como, 

M = 2G#& − 50	

	

19. Los puntos (−1, 3) y (0, 2) están en una curva y en cualquier punto (#, M) en 
la curva M!! = 2 − 4#. Determine la ecuación de la curva.  

Solución: 

Se sabe que la curva en cualquier punto (#, M) representa a la segunda derivada en 
ese punto, por tanto, 

M!! =
(#M
(##

= 2 − 4#																 ⇒ 																
(
(#
?
(M
(#
A = 2 − 4#	

(M′
(#

= 2 − 4#	

Despejando, 

(M! = (2 − 4#)(#	

Aplicamos integración en ambas expresiones para obtener la tangente a la curva 
(primera derivada de M), en consecuencia:  

'(M′ = '(2 − 4#)(# 												⇒ 													 M! = 2# − 4 ⋅
1
2
## + *	

M! = 2# − 2## + *	

Nuevamente, aplicamos integración en ambas expresiones para calcular la ecuación 
de la curva, por tanto: 

'(M = '(2# − 2## + *)(# 								⇒ 										M = 2 ⋅
1
2
## − 2 ⋅

1
3
#& + *# + *"	

M = ## −
2
3
#& + *# + *"	
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Ahora procedemos a evaluar los puntos (−1, 3) y (0, 2) que forman parte de una 
curva. Primero evaluamos el punto (−1, 3) y sustituimos en la curva "M" para 
determinar el valor de las constantes * y *",  

3 = (−1)# −
2
3
(−1)& + *(−1) + *"	

3 − 1 −
2
3
= −* + *" 											⇒ 														−* + *" =

4
3
								(1)	

Ahora, evaluamos el punto (0, 2) 

3 = (0)# −
2
3
(0)& + *(0) + *"	

3 = *"	

Sustituyendo el valor de la constante *" en la ecuación (1), queda: 

−* + 3 =
4
3
										⇒ 											* =

5
3
	

Finalmente, la ecuación de la curva queda definida como: 

M = ## −
2
3
#& +

5
3
# + 3	

 
20. Después de @ años la población de cierta ciudad crece al ritmo de 500 + 600√@ 

por año. La población actual es de 120,000 personas. Determine la población 
dentro de 4 años.  

Solución: 

Se sabe que el crecimiento poblacional con relación al tiempo se define como, V!(@) 
y según el dato del problema es 500 + √@. Como condición inicial se tiene que V(0) 
es la población actual de 120,000 personas. Por lo tanto: 
(V(@)
(@

= 500 + 600√@	

V(@) = 'I500 + 600√@J(@ = 500'(@ + 600'@"/#	 (@	

V(@) = 500@ + 600 ∙
2
3
@&/# + * = 500@ + 400@&/# + *	

Si V(0) = 120000, se obtiene el valor de la constante C, 
120000 = *	
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En consecuencia, la expresión general que describe la población en función del 
tiempo, para distintos intervalos, es: 

V(@) = 500@ + 400@&/# + 120000	

Finalmente, la población dentro de 4 años es: 

V(4) = 500(4) + 400(4)&/# + 120000	

V(4) = 2000 + 3200 + 120000	

V(4) = 125200	

 

Los teoremas 1.5 a 1.10 permiten evaluar las integrales indefinidas de funciones 
trigonométricas y las que dan como resultado funciones trigonométricas inversas. 
Estos teoremas son consecuencia directa de los teoremas de derivación. 

Teorema 1.5:   

'sin -, (, = −
1
-
cos -, + * 

Teorema 1.6:   

'cos -, (, =
1
-
sin -, + * 

Teorema 1.7:   

'sec# -, (, =
1
-
tan-, + * 

Teorema 1.8:   

'csc# -, (, = −
1
-
cot -, + * 

Teorema 1.9:   

'sec -, tan -, (, =
1
-
sec -, + * 

Teorema 1.10:   

'csc -, cot -, (, = −
1
-
csc -, + * 

Teorema 1.11:   

'
(,

√-# − ,#
= sin*"

,
-
+ * 
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Teorema 1.12:   

'
(,

-# + ,#
=
1
-
tan*"

,
-
+ * 

Teorema 1.13:   

'
(,

,√,# − -#
=
1
-
sec*"

,
-
+ * 

 
Para evaluar las integrales indefinidas a veces es necesario el uso de identidades 
trigonométricas, tales como,  

csc # sin # = 1											 ⇒ 													 csc # =
1

sin #
	

sec # cos # = 1											 ⇒ 												 sec # =
1

cos #
	

cot # tan # = 1											 ⇒ 												 cot # =
1

tan #
	

tan # =
sin #
cos #

;					cot # =
cos #
sin #

	

sin# # + cos# # = 1;				tan# # + 1 = sec# # ;				cot# # + 1 = csc# #	

sin 2# = 2 sin # cos # ;			
1
2
sin # = sin F

#
2
H cos F

#
2
H	

 
En los siguientes ejercicios se utilizan los teoremas 1.5 a 1.10 de la integración 
indefinida de funciones trigonométricas.  

21.'(3 sin @ − 2 cos @)(@	

Solución: 

'(3 sin @ − 2 cos @)(@ = 3'sin @ (@ − 2'cos @ (@ = −3 cos @ − 2 sin @ + *	

	

22.'(5 cos # − sin #)(# 

Solución: 

'(5 cos # − sin #)(# = 5'cos # (# −'sin # (# = −5 sin # − cos # + * 



19 

23.'(4 csc # cot # + 2 sec# #)(#	

Solución: 

'(4 csc # cot # + 2 sec# #)(# = 4'csc # cot # (# + 2'sec# # (#

= −4 csc # + 2 tan # + *	

 

24.'(3 csc# # − 5 sec # tan #)(#	

Solución: 

'(3 csc# # − 5 sec # tan #)(# = 3'csc# # (# − 5'sec # tan # (#

= −3 cot # − 5 sec # + *	

 

25.'(2 cot# ^ − 3 tan# ^)(^	

Solución: 

De acuerdo con los teoremas 1.5 a 1.10 no tenemos integrales inmediatas de las 
funciones trigonométricas cot# ^ y tan# ^, para lo cual serán sustituidas con las 
siguientes identidades trigonométricas: cot# ^ = csc# ^ − 1 y tan# ^ = sec# ^ − 1. 
Por lo tanto, 

'(2 cot# ^ − 3 tan# ^)(^ = 2'(csc# ^ − 1)(^	 − 3'(sec# ^ − 1)(^

= 2'csc# ^ (^	 − 2'(^	 − 3'sec# ^ (^ + 3'(^	

= −2 cot ^ − 2^ − 3 tan^ + 3^ + *

= −2cot ^ − 3 tan^ + ^ + *	

 

26.'sin ?
^
2
A cos ?

^
2
A (^	

Solución: 

En este ejercicio observamos que no existe una forma inmediata de evaluar la 
integral, para lo cual utilizamos la identidad trigonométrica:  
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sin ?
^
2
A cos ?

^
2
A =

1
2
sin ^	

Por	lo	tanto,	

' sin ?
^
2
A cos ?

^
2
A(^ =

1
2
'sin ^ (^ = −

1
2
cos ^ + *	

	

27.'[12 + csc ^ (sin ^ + csc ^)](^	

Solución:  

'[12 + csc ^ (sin ^ + csc ^)](^ = '[12 + (csc ^ sin ^ + csc# ^)](^ 

De acuerdo con la identidad trigonométrica csc ^ sin ^ = 1, sustituimos y 
evaluamos, 

'[12 + csc ^ (sin ^ + csc ^)](^ = '[12 + (1 + csc# ^)](^ = '(13 + csc# ^)(^

= 13'(^ +'csc# ^ (^ = 13^ − cot ^ + *	

	

28.'(2 cos @ − sec @ tan @)(@	

Solución: 

'(2 cos @ − sec @ tan @)(@ = 2'cos @ (@ − 'sec @ tan @ (@ 				

= 2 sin @ − sec @ + *	

	

29.'(sec# N + 7 sec N tanN)(N	

Solución: 

'(sec# N + 7 sec N tanN)(N = 'sec# N (N + 7'sec N tanN (N

= tanN + 7 sec N + *	
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30.'(csc#b − sec#b)(b 

Solución: 

'(csc#b − sec#b)(b = 'csc#b(b −'sec#b(b = −cotb − tanb + *	

 

31.'(8 cos # − 3 csc # cot #)(# 

Solución: 

'(8 cos # − 3 csc # cot #)(# = 8'cos # (# − 3'csc # cot # (#

= 8 sin # + 3 csc # + *	

 

32.' tan # (cot # − cos #)(# 

Solución: 

'tan# (cot # − cos #)(# = ' tan # cot # (# −' tan # cos # (# 

Para la primera y segunda integral utilizamos las identidades trigonométricas, 
tan # cot # = 1 y tan # = sin # / cos #, por lo tanto, sustituimos y evaluamos, 

'tan# (cot # − cos #)(# = '(# −'
sin #
cos #

∙ cos # (# = '(# −'sin # (#

= # + cos # + *	

 

33.'
cos& , + sin ,

cos# ,
(, 

Solución: 

Aplicamos la división término por término y simplificamos según corresponda, en 
consecuencia, 

'
cos& , + sin ,

cos# ,
(, = 'Q

cos& ,
cos# ,

+
sin ,
cos# ,

R(, = '?cos , +
sin ,
cos ,

∙
1

cos ,
A(, 
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Pero, recordemos que tan , = sin , / cos ,	 y sec , = 1/ cos ,, por lo tanto, 
sustituimos y evaluamos, 

'
cos& , + sin ,

cos# ,
(, = '(cos , + tan , sec ,)(, = 'cos , (, + 'tan, sec , (,

= sin , + sec , + *	

 

34.'
3 tan^ − 4 cos# ^

cos ^
(^ 

Solución: 

Nuevamente, dividimos término a término y simplificamos, 

'
3 tan^ − 4 cos# ^

cos ^
(^ = 'Q

3 tan^
cos ^

−
4 cos# ^
cos ^

R(^

= 3'tan^ ∙
1

cos ^
(^	 − 4'cos ^ (^	 

Pero, sec ^ = 1/ cos ^, por lo tanto, sustituimos y evaluamos, 

'
3 tan^ − 4 cos# ^

cos ^
(^ = 3'tan^ sec ^ (^	 − 4 sin ^ + *

= 3 sec ^ − 4 sin ^ + * 

 

En los siguientes ejercicios de integración se emplean los teoremas 1.11 a 1.13 que 
dan como resultados funciones trigonométricas inversas. 

35.'
(#

√4 − ##
 

Solución: 

Utilizando el teorema 1.11, deducimos que - = 2 y , = # 

'
(#

√4 − ##
= sin*"

#
2
+ * 

 

36.'
(#

√5 − ##
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Solución: 

Utilizamos el teorema 1.11, para lo cual - = √5 y , = # 

'
(#

√5 − ##
= sin*"

#

√5
+ * 

 

37.'
(#

## + 25
 

Solución: 

Se utiliza el teorema 1.12, donde - = 5 y , = # 

'
(#

## + 25
=
1
5
tan*"

#
5
+ * 

 

38.'
(#

## + 11
 

Solución: 

Utilizamos el teorema 1.12, donde - = √11 y , = # 

'
(#

## + 11
=

1

√11
tan*"

#

√11
+ * 

 

39.'
(#

4#√## − 16
 

Solución: 

Utilizamos el teorema 1.13, donde - = 4 y , = # 

'
(#

4#√## − 16
=
1
4
'

(#

#√## − 16
=
1
4
∙
1
4
sec*"

#
4
+ * =

1
16
sec*"

#
4
+ * 

 

40.'
(#

5#√## − 21
 

Solución: 

Se utiliza el teorema 1.13, donde - = √21 y , = # 
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'
(#

5#√## − 21
=
1
5
'

(#

#√## − 21
=
1
5
∙
1

√21
sec*"

#

√21
+ *

=
1

5√21
sec*"

#

√21
+ * 

 

41.'
√7(#

#√## − 7
 

Solución: 

Se utiliza el teorema 1.13, donde - = √7 y , = # 

'
√7(#

#√## − 7
= √7'

(#

#√## − 7
= √7 ∙

1

√7
sec*"

#

√7
+ * = sec*"

#

√7
+ * 

 

42.'
2#& − ## + 2# + 4

1 + ##
(# 

Solución: 

Se utiliza la división larga o sintética que consiste en dividir una función polinómica 
por un binomio.  

de0 − e1 + de + f e1 + g 
−de0 										− de 2# − 1 
										−e1			//			+f  
															e1 									+ g  
														//															h  

 

'
2#& − ## + 2# + 4

1 + ##
(# = '?2# − 1 +

5
1 + ##

A(#

= 2'#(# − '(# + 5'
(#

1 + ##

= 2 ∙
1
2
## − # + 5 tan*" # + * = ## − # + 5 tan*" # + * 

 

43.'
#(

1 + ##
(# 

Solución: 
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Se utiliza la división sintética según lo desarrollado en el ejercicio 42.  
				e2 e1 + g 
−e2 − e3 #) − ## + 1 
	//							e3 + e1  
											//							e1  

							−e1 − g  
								//		−g  

 

'
#(

1 + ##
(# = '?#) − ## + 1 −

1
1 + ##

A (#

= '#)(# − '##(# +'(# −'
(#

1 + ##

=
1
5
#' −

1
3
#& + # − tan*" # + * 

 

1.2. Integrales indefinidas por el método de sustitución o cambio de variable. 

La integración por sustitución (conocida como sustitución en u) es una técnica para 
resolver algunas funciones compuestas. El método se basa en cambiar la variable de 
la integración para obtener una integral indefinida simple. El siguiente teorema 
muestra cómo funciona la técnica de sustitución o cambio de variable. 

Teorema 1.14:  

Sea i una función diferenciable en un intervalo j donde la derivada es continua. Sea 
! continua en el intervalo k que contiene el rango de la función i. Si % es una 
antiderivada de la función % en k, entonces: 

'!Ii(#)Ji!(#)(# = %Ii(#)J + *,			# ∈ j 

Pasos de la integración por sustitución: 

Paso 1: elegir una nueva variable N. 

Paso 2: determinar el valor de (N. 

Paso 3: efectuar la sustitución, es decir, eliminar todas las apariciones de # (o de 
cualquiera otra variable) en la integral, de modo que ésta quede expresada 
únicamente en términos de N. 

Paso 4: evaluar la nueva integral. 

Paso 5: devolver la evaluación a la variable inicial # (o cualquier otra variable inicial). 
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En los siguientes ejercicios se evalúan las integrales indefinidas mediante los pasos 
del método básico de cambio de variable.  

1.',(,# + 2)#(, 

Solución: 

Método 1: utilizamos los pasos de integración del cambio de variable. 

N = ,# + 2										 ⇒ 									(N = 2,(,									 ⇒ 								,(, =
1
2
(N 

',(,# + 2)#(, = '(,# + 2)#,(, = 'N# ?
1
2
(NA =

1
2
'N#(N =

1
2
∙
1
3
N& + *

=
1
6
(,# + 2)& + * 

 

Método 2: desarrollo algebraico 

',(,# + 2)#(, = ',(,) + 2(,#)(2) + 4)(, = '(,' + 4,& + 4,)(,

= ','(, + 4',&(, + 4',(,

=
1
6
,( + 4 ∙

1
4
,) + 4 ∙

1
2
,# + * =

1
6
,( + ,) + 2,# + * 

En este ejercicio, aunque resulta fácil evaluar la expresión (,# + 2)#, se recomienda 
aplicar el método del cambio de variable. 

 

2.'(# + 1))(# 

Solución: 

Aplicamos los pasos de integración del cambio de variable. 

N = # + 1										 ⇒ 											(N = (# 

'(# + 1))(# = 'N)(N =
1
5
N' + * =

1
5
(# + 1)) + * 

 

3.'(@ + 1)".(@ 
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Solución: 

Para la solución de este ejercicio utilizamos los pasos del cambio de variable. 

N = @ + 1										 ⇒ 											(N = (@ 

'(@ + 1)".(@ = 'N".(N =
1
11
N"" + * =

1
11
(@ + 1)"" + * 

 

4.'
(#

(# − 10),
 

Solución: 

Se emplea el método de sustitución de variable para realizar la integración. 

N = # − 10										 ⇒ 											(N = (# 

'
(#

(# − 10),
= '

(N
N,

= 'N*,(N =
1
−6

N*( + * = −
1
6N(

+ *

= −
1

6(# − 10)(
+ * 

 

5.'√2# − 5(# 

Solución: 

Se utiliza los pasos de integración del cambio de variable. 

N = 2# − 5						 ⇒ 						(N = 2(#				 ⇒ 					(# =
1
2
(N 

'√2# − 5(# = '(N)"/#
1
2
(N =

1
2
'N"/#(N =

1
2
∙
2
3
N&/# + *

=
1
3
(2# − 5)&/# + * 

 

6.'(9@ + 11)'(@ 

Solución: 

Se aplican los procedimientos de integración por sustitución de variable. 
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N = 9@ + 11						 ⇒ 							(N = 9(@						 ⇒ 						(@ =
1
9
(N 

'(9@ + 11)'(@ = 'N' ?
1
9
(NA =

1
9
'N'(N =

1
9
∙
1
6
N( + *	

=
1
54
(9@ + 11)( + * 

 

7.'?1 +
1
@
A
&

∙ ?
1
@#
A (@ 

Solución: 

Se aplica el método de integración del cambio de variable. 

N = 1 +
1
@
											⇒ 								(N = −

1
@#
(@							 ⇒ 						

1
@#
(@ = −(N 

'?1 +
1
@
A
&

∙ ?
1
@#
A(@ = '(N)&(−(N) = −'N&(N = −

1
4
N) + *

= −
1
4
?1 +

1
@
A
)

+ * 

 

8.'
cos√#

√#
(# 

Solución: 

 Se lleva a cabo la integración utilizando el cambio de variable. 

N = √# 											⇒ 											(N =
1

2√#
(#										 ⇒ 										

(#

√#
= 2(N 

'
cos√#

√#
(# = 'cos N (2(N) = 2'cos N (N = 2 sin N + *										

= 2 sin√# + * 

 

9.'
1
^#
cos ?

1
^
A(^ 

Solución: 
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Se realiza la integración siguiendo los pasos del cambio de variable. 

N =
1
^
											⇒ 											(N = −

1
^#
(^									 ⇒ 								

1
^#
(^ = −(N 

'
1
^#
cos ?

1
^
A (^ = 'cos FN

4
H (−(N) = −'cos N (N = −sin N + *

= −sin ?
1
@
A + * 

 

10.'sin 2# cos 2# (# 

Solución: 

Se emplea el método de sustitución de variable para realizar la integración. 

N = sin 2# 									⇒ 									(N = 2 cos 2# (#							 ⇒ 					 cos 2# (# =
1
2
(N 

'sin 2# cos 2# (# = 'N ?
1
2
(NA =

1
2
'N(N =

1
2
∙
1
2
N# + * =

1
4
sin# 2# + * 

 

11.'# sin ## (# 

Solución: 

Se aplican los pasos del cambio de variable para realizar la integración. 

N = ##(#									 ⇒ 								(N = 2#(#								 ⇒ 							#(# =
1
2
(N 

'# sin ## (# = 'sin N ?
1
2
(NA =

1
2
'sin N (N = −

1
2
cos N + *	

= −
1
2
cos ## + * 

 

12.' √tan #
! sec# # (# 

Solución: 

Se utiliza los pasos de integración de cambio de variable. 

N = tan # (#										 ⇒ 											(N = sec# # (# 
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' √tan #
! sec# # (# = ' √N

! (N = 'N"/&(N =
3
4
N)/& + *

=
3
4
(tan #))/& + * =

3
4
Gtan) #
!

+ * 

 

13.'
csc# #
cot& #

(# 

Solución: 

Se siguen los pasos de integración de cambio de variable. 

N = cot # (#								 ⇒ 								(N = −csc# # (#							 ⇒ 				 csc# # (# = −(N 

'
csc# #
cot& #

(# = '
−(N
(N)&

= −'N*&(N = −
1
−2

N*# + * =
1
2N#

+ *

=
1

2 cot# #
+ * =

1
2
tan# # + * 

 

14.'
sin #
cos& #

(# 

Solución: 

Se utiliza los pasos de integración de cambio de variable. 

N = cos # (#								 ⇒ 								(N = −sin # (#							 ⇒ 					 sin # (# = −(N 

'
sin #
cos& #

(# = '
−(N
(N)&

= −'N*&(N = −
1
−2

N*# + * =
1
2N#

+ *

=
1

2 cos# #
+ * =

1
2
sec# # + * 

 

15.'#√# + 6(# 

Solución: 

Presentamos dos métodos de cambio de variable que conllevan a la misma solución. 

Método 1: se utiliza los pasos de integración de cambio de variable considerando 
solamente el radicando. 

N = # + 6										 ⇒ 							# = N − 6								 ⇒ 								(N = (# 
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'#√# + 6(# = '(N − 6)N"/#(N = 'NN"/#(N − 6'N"/#(N

= 'N&/#(N − 6'N"/#(N =
2
5
N'/# − 6 ∙

2
3
N&/# + *

=
2
5
(# + 6)'/# − 4(# + 6)&/# + *

=
2
5
I√# + 6J

'
− 4I√# + 6J

&
+ * 

 
Método 2: se utiliza los pasos de integración de cambio de variable considerando la 
raíz cuadrada. 

N = √# + 6 							⇒ 					 N# = # + 6					 ⇒ 						# = N# − 6						 ⇒ 					(# = 2N(N 

'#√# + 6(# = '(N# − 6)N(2N(N) = 2'N#(N# − 6)(N = 2'(N) − 6N#)(N

= 2'N)(N − 12'N#(N = 2 ∙
1
5
N' − 12 ∙

1
3
N& + *

=
2
5
I√# + 6J

'
− 4I√# + 6J

&
+ * 

 

16.'#√3# − 4(# 

Solución: 

Método 1: se utiliza los pasos de integración de cambio de variable considerando 
solamente el radicando. 

N = 3# − 4										 ⇒ 							# =
1
3
(N + 4) 										⇒ 												(# =

1
3
(N 

'#√3# − 4(# = '
1
3
(N + 4)N"/#

1
3
(N =

1
9
'(NN"/# + 4N"/#)(N

=
1
9
'N&/#(N +

4
9
'N"/#(N =

1
9
∙
2
5
N'/# +

4
9
∙
2
3
N&/# + *

=
2
45
(3# − 4)'/# +

8
27
(3# − 4)&/# + *

=
2
45
I√3# − 4J

'
+
8
27
I√3# − 4J

&
+ * 
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Método 2: se utiliza los pasos de integración de cambio de variable considerando 
solamente la raíz. 

N = √3# − 4 					⇒ 					 N# = 3# − 4					 ⇒ 					# =
1
3
(N# + 4) 					⇒ 					(# =

2
3
N(N 

'#√3# − 4(# = '
1
3
(N# + 4)N ?

2
3
N(NA =

2
9
'N#(N# + 4)(N

=
2
9
'(N) + 4N#)(N =

2
9
'N)(N +

8
9
'N#(N

=
2
9
∙
1
5
N' +

8
9
∙
1
3
N& + *

=
2
45
I√3# − 4J

'
+
8
27
I√3# − 4J

&
+ * 

 

17.'##√1 − #(# 

Solución: 

Método 1: se utiliza los pasos de integración de cambio de variable considerando 
solamente el radicando. 

N = 1 − #										 ⇒ 							# = 1 − N													 ⇒ 													(# = −(N 

'##√1 − #(# = '(1 − N)#N"/#(−(N) = −'(1 − 2N + N#)N"/#(N

= −'N"/#(N + 2'N ∙ N"/#(N −'N# ∙ N"/#(N

= −'N"/#(N + 2'N&/#(N −'N'/#(N

= −
2
3
N&/# + 2 ∙

2
5
N'/# −

2
7
N,/# + *

= −
2
3
(1 − #)&/# +

4
5
(1 − #)'/# −

2
7
(1 − #),/# + *

= −
2
3
I√1 − #J

&
+
4
5
I√1 − #J

'
−
2
7
I√1 − #J

,
+ * 

 
Método 2: se utiliza los pasos de integración de cambio de variable considerando 
solamente la raíz. 

N = √1 − # 						⇒ 						 N# = 1 − #						 ⇒ 					# = 1 − N# 					⇒ 						(# = −2N(N 
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'##√1 − #(# = '(1 − N#)#N(−2N(N) = −2'N#(1 − N#)#(N

= −2'N#(1 − 2N# + N))(N = −2'(N# − 2N) + N()(N

= −2'N#(N + 4'N)(N − 2'N((N

= −2 ∙
1
3
N& + 4 ∙

1
5
N' − 2 ∙

1
7
N, + *

= −
2
3
I√1 − #J

&
+
4
5
I√1 − #J

'
−
2
7
I√1 − #J

,
+ * 

 

18.'(# + 1)√2 − #(# 

Solución: 

Método 1: aplicamos cambio de variable considerando solamente el radicando. 

N = 2 − #										 ⇒ 							# = 2 − N														 ⇒ 								(# = −(N 

'(# + 1)√2 − #(# = '(2 − N + 1)N"/#(−(N) = −'(3 − N)N"/#(N

= −'3N"/#(N +'N ∙ N"/#(N = −3'N"/#(N +'N&/#(N

= −3 ∙
2
3
N&/#	 +

2
5
N'/# + *

= −2(2 − #)&/# +
2
5
(2 − #)'/# + *

= −2I√2 − #J
&
+
2
5
I√2 − #J

'
+ * 

 
Método 2: aplicamos cambio de variable considerando solamente la raíz. 

N = √2 − # 							⇒ 					 N# = 2 − #						 ⇒ 						# = 2 − N# 						⇒ 					(# = −2N(N 

'(# + 1)√2 − #(# = '(2 − N# + 1)N(−2N(N) = −2'N#(3 − N#)(N

= −2'(3N# − N))(N = −6'N#(N + 2'N)(N

= −6 ∙
N&

3
+ 2 ∙

N'

5
+ * = −2I√2 − #J

&
+
2
5
I√2 − #J

'
+ * 



34 

19.'
## − 1

√2# − 1
(# 

Solución: 

Se utiliza los pasos de integración del cambio de variable. 

N = √2# − 1 					⇒ 					 N# = 2# − 1					 ⇒ 					# =
1
2
(N# + 1) 					⇒ 								(# = N(N 

'
## − 1

√2# − 1
(# = '

[1/2(N# + 1)]# − 1
N

N(N = 'm
1
4
(N# + 1)# − 1n (N

= 'm
1
4
(N) + 2N# + 1) − 1n (N = 'Q

N) + 2N# + 1 − 4
4

R(N

=
1
4
'N)(N +

1
2
'N#(N −

3
4
'(N =

1
4
∙
N'

5
+
1
2
∙
N&

3
−
3
4
N + *

=
1
20
I√2# − 1J

'
+
1
6
I√2# − 1J

&
−
3
4
√2# − 1 + * 

 

20.'
(#

√1 − 4##
 

Solución: 

Aplicamos los pasos del cambio de variable y teorema 1.11 (donde - = 1 y , = N). 

N = 2#											 ⇒ 								(N = 2(#													 ⇒ 							(# =
1
2
(N 

'
(#

√1 − 4##
= '

(#

G1# − (2#)#
=
1
2
'

(N

√1 − N#
=
1
2
sin*" N + *			

=
1
2
sin*" 2# + * 

 

21.'
(#

√9 − 16##
 

Solución: 

Aplicamos los pasos del cambio de variable y teorema 1.11 (donde - = 3 y , = N). 

N = 4#											 ⇒ 								(N = 4(#													 ⇒ 							(# =
1
4
(N 
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'
(#

√9 − 16##
= '

(#

G3# − (4#)#
= '

1/4(N

√3# − N#
=
1
4
'

(N

√3# − N#
=
1
4
sin*"

N
3
+ *

=
1
4
sin*"

4#
3
+ * 

 

22.'
(#

1 + 25##
 

Solución: 

Aplicamos los pasos del cambio de variable y teorema 1.11 (donde - = 1 y , = N). 

N = 5#											 ⇒ 								(N = 5(#													 ⇒ 							(# =
1
5
(N 

'
(#

1 + 25##
= '

(#
1# + (5#)#

= '
1/5(N
1# + N#

=
1
5
'

(N
1# + N#

=
1
5
tan*" N + *

=
1
5
tan*" 5# + * 

 

23.'
(#

2 + 9##
 

Solución: 

Aplicamos cambio de variable y usamos el teorema 1.11 (donde - = √2 y , = N). 

N = 3#											 ⇒ 								(N = 3(#													 ⇒ 							(# =
1
3
(N 

'
(#

2 + 9##
= '

(#

I√2J
#
+ (3#)#

= '
1/3(N

I√2J
#
+ N#

=
1
3
'

(N

I√2J
#
+ N#

 

=
1
3
∙
1

√2
	tan*"

N

√2
+ * =

1

3√2
tan*"

3#

√2
+ * 

 

24.'
o6

5 + o#6
(# 

Solución: 

Aplicamos cambio de variable y utilizamos el teorema 1.11 (donde - = √5 y , = N). 



36 

N = o6 											⇒ 								(N = o6(# 

'
o6

5 + o#6
(# = '

o6(#

I√5J
#
+ (o6)#

= '
(N

I√5J
#
+ N#

=
1

√5
	tan*"

N

√5
+ *

=
1

√5
tan*"

o6

√5
+ * 

 

25.'
2# − 3

√1 − ##
(# 

Solución: 

Dividimos término a término, quedándonos dos integrales. La primera integral 
aplicamos cambio de variable y la segunda integral usamos el teorema 1.11 (donde 
- = 1 y , = #). 

N = 1 − ## 											⇒ 								(N = −2(#										 ⇒ 							2(# = −(N 

'
2# − 3

√1 − ##
(# = '

2#(#

√1 − ##
− 3'

(#

√1# − ##
= '

−(N

√N
− 3 sin*" # + *

= −'N*
"
#(N − 3 sin*" # + * = −

1
1/2

N"/# − 3sin*" # + *

= −2G1 − ## − 3sin*" # + * 

 

26.'
# − 8
## + 2

(# 

Solución: 

Dividimos término a término, quedándonos dos integrales. La primera integral 
aplicamos cambio de variable y la segunda integral se emplea el teorema 1.12 
(donde - = √2 y , = #). 

N = ## + 2											 ⇒ 												(N = 2#(#								 ⇒ 											#(# =
1
2
(N 

'
# − 8
## + 2

(# = '
#(#
## + 2

− 8'
(#

## + I√2J
# = '

1
2(N

N
− 8 ∙

1

√2
tan*"

,

√2
+ *

=
1
2
ln N − 4√2 tan*"

#

√2
+ * 
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'
# − 8
## + 2

(# =
1
2
ln(## + 2) − 4√2 tan*"

#

√2
+ * 

 

27.'
tan*" #
1 + ##

(# 

Solución: 

 Utilizamos la técnica de sustitución de variable. 

N = tan*" # 										⇒ 								(N =
(#

1 + ##
 

'
tan*" #
1 + ##

(# = ' tan*" # ∙
(#

1 + ##
= 'N(N =

1
2
N# + * =

1
2
(tan*" #)# + * 

 

28.'p
sin*" #
1 − ##

(# 

Solución: 

 Aplicamos el método del cambio de variable. 

N = sin*" # 										⇒ 								(N =
(#

√1 − ##
 

'p
sin*" #
1 − ##

(# = '
√sin*" #

√1 − ##
(# = '(sin*" #)"/#

(#

√1 − ##
= 'N"/# (N

=
2
3
N&/# + * =

2
3
(sin*" #)&/# + * =

2
3
FGsin*" #H

&
+ * 

 

29.'
(#

## − # + 2
 

Solución: 

Completamos cuadrados a la expresión del denominador mF7
#
H
#
= F−

"
#
H
#
= "

)
n. 

Después, utilizamos cambio de variable y el teorema 1.12. 

N = # −
1
2
										⇒ 								(N = (# 
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'
(#

## − # + 2
= '

(#

F## − # +
1
4H + 2 −

1
4

= '
(#

F# −
1
2H

#
+ 74

= '
(N

N# + Q√
7
2 R

#

=
1

√7
2

tan*"q
N

√7
2

r + * =
2

√7
tan*"q

# − 12
√7
2

r + *

=
2

√7
tan*"q

2# − 1
2
√7
2

r+ * =
2

√7
tan*" ?

2# − 1

√7
A + * 

 

30.'
(#

√3# − ## − 2
 

Solución: 

Primero completamos cuadrados a la expresión del denominador mF− &
#
H
#
= -

)
n. 

Después, aplicamos cambio de variable y utilizamos el teorema 1.12. 

N = # −
3
2
										⇒ 								(N = (# 

'
(#

√3# − ## − 2
= '

(#

G−(## − 3# + 2)
= '

(#

s−tF## − 3# +
9
4H + 2 −

9
4u

= '
(#

p−mF# −
3
2H

#
−
1
4n

= '
(#

s1
4 − F# −

3
2H

#
= '

(N

sF
1
2H

#
− (N)#

= sin*" v
N
1
2

w + * = sin*"v
# −

3
2

1
2

w + *

= sin*" v

2# − 3
2
1
2

w + * = sin*"(2# − 3) + * 

 

31.'
(#

√15 + 2# − ##
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Solución: 

Completamos cuadrados a la expresión del denominador mF− #
#
H
#
= 1n. Después, se 

utiliza los pasos de integración de cambio de variable y aplicar el teorema 1.12. 

N = # − 1										 ⇒ 								(N = (# 

'
(#

√15 + 2# − ##
= '

(#

G−(## − 2# − 15)
= '

(#

G−[(## − 2# + 1) − 15 − 1]

= '
(#

G−[(# − 1)# − 16]
= '

(#

G16 − (# − 1)#

= '
(N

G(4)# − (N)#
= sin*" F

N
4
H + * = sin*" ?

# − 1
4

A + * 

 

32.'
2(#

(# − 3)√## − 6# + 5
 

Solución: 

Completamos cuadrados a la expresión del denominador mF− (
#
H
#
= 9n. Después, se 

utiliza los pasos de integración de cambio de variable y aplicar el teorema 1.12. 

N = # − 3										 ⇒ 								(N = (# 

'
2(#

(# − 3)√## − 6# + 5
= 2'

(#

(# − 3)G(## − 6# + 9) + 5 − 9

= '
(#

(# − 3)G(# − 3)# − 2#
= '

(N

N√N# − 2#
=
1
2
sec*" F

N
2
H + *

=
1
2
sec*" ?

# − 3
2

A + * 

 
1.3. Integrales indefinidas de funciones logarítmica natural y exponencial. 

A continuación, se presentan los teoremas de las integrales indefinidas de funciones 
exponenciales y logarítmicas naturales. 

Teorema 1.14:  

'
(,
,
= ln , + * 
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Teorema 1.15:  

-.' o8(, = o8 + *															 

x.'o±:8(, = ±
1
-
o±:8 + * 

Teorema 1.16:  

-.'x8(, =
x8

ln x
+ *																 

x.'x±:8(, = ±
1
-
x±:8

ln x
+ * 

 
En los siguientes ejercicios se utilizan los teoremas 1.14 a 1.16 de la integración 
indefinida de funciones exponenciales y logarítmicas, así como también se pueden 
encontrar integrales de los teoremas 1.1 a 1.13.  

 

1.'
(#
7#

 

Solución: 

Toda constante fuera de la integral, y utilizamos el teorema 1.14, en consecuencia, 

'
(#
7#

=
1
7
'
(#
#
	=

1
7
ln|#| + * 

 

2.'7o6/,	(# 

Solución: 

Llevamos la constante fuera de la integral, y utilizamos el teorema 1.15 (b), 

'7o6/,	(# = 7 ∙
1
1/7

o6/, + * = 49o6/, + * 

 

3.'(o#6 + o*#6)(# 

Solución: 
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Esta integral indefinida es una expresión de 2 términos, es decir, que para cada 
termino una integral e inmediatamente aplicamos el teorema 1.15 (b). 

'(o#6 + o*#6)(# = 'o#6(# +'o*#6(# =
1
2
o#6 −

1
2
o*#6 + * 

 

4.'(o6 + o*6)#(# 

Solución: 

Primero trabajamos el binomio que produce un trinomio cuadrado perfecto. 
Después, tenemos tres integrales indefinidas e inmediatamente aplicamos los 
teoremas 1.15 (b) y 1.2, respectivamente. Por lo tanto,  

'(o6 + o*6)#(# = '(o#6 + 2o6o*6 + o*#6)(#

= 'o#6(# + 2'(# +'o*#6(# =
1
2
o#6 + 2# −

1
2
o*#6 + * 

 

5.'
GM − M
M#

(M 

Solución: 

Dividimos término a término, y aplicamos los teoremas 1.4 y 1.14. Por lo tanto, 

'
GM − M
M#

(M = 'Q
M"/#

M#
−
M
M#
R(M = 'M*&/#(M −'

(M
M

= −2M*"/# − lnM + * = −
2

GM
− lnM + * 

 

6.'?
#
2
−
2
#
A (# 

Solución: 

La integral se descompone en dos integrales que son resueltas de manera inmediata 
aplicando los teoremas 1.4 y 1.14. 

'?
#
2
−
2
#
A(# =

1
2
'#(# − 2'

(#
#
=
1
2
∙
1
2
## − 2 ln # + * =

1
4
## − 2 ln # + * 
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7.'
(#
# − 5

 

Solución: 

Esta integral no puede evaluarse de manera inmediata ni por la división larga, en 
consecuencia, aplicamos el método del cambio de variable. 

N = # − 5										 ⇒ 								(N = (# 

'
(#
# − 5

= '
(N
N
= lnN + * = ln(# − 5) + * 

 

8.'
(#

2# + 5
 

Solución: 

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.14, 

N = 2# + 5											 ⇒ 							(N = 2(#										 ⇒ 							(# =
1
2
(N 

'
(#

2# + 5
= '

1/2(N
N

=
1
2
'
(N
N
=
1
2
ln N + * =

1
2
ln(2# + 5) + * 

 

9.'
9(#
5 − 4#

 

Solución: 

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.14, 

N = 5 − 4#											 ⇒ 								(N = −4(#										 ⇒ 							(# = −
1
4
(N 

'
9(#
5 − 4#

= 9'
−1/4(N

N
= −

9
4
'
(N
N
= −

9
4
ln N + * = −

9
4
ln(5 − 4#) + * 

 

10.'
##

5 − #&
(# 

Solución: 

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.14, 

| 
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N = 5 − #& 											⇒ 								(N = −3##(#										 ⇒ 							 ##(# = −
1
3
(N 

'
##

5 − #&
(# = '

−1/3(N
N

= −
1
3
'
(N
N
= −

1
3
ln N + * = −

1
3
ln(5 − #&) + * 

 

11.'
## − 2#
#& − 3##

(# 

Solución: 

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.14, 

N = #& − 3## 					⇒ 					(N = (3## − 6#)(#						 ⇒ 					 (## − 2#)(# =
1
3
(N 

'
## − 2#
#& − 3##

(# = '
1/3(N
N

=
1
3
'
(N
N
=
1
3
ln N + * =

1
3
ln(#& − 3##) + * 

 

12.'
## + 4#

#& + 6## + 5
(# 

Solución: 

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.14, 

N = #& + 6## + 5							 ⇒ 						(N = (3## + 12#)(#						 ⇒ 				 (## + 4#)(# =
1
3
(N 

'
## + 4#

#& + 6## + 5
(# = '

1/3(N
N

=
1
3
'
(N
N
=
1
3
ln N + * =

1
3
ln(#& + 6## + 5) + * 

 

13.'o"*&6(# 

Solución: 

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.15a, 

N = 1 − 3#												 ⇒ 									(N = −3(#										 ⇒ 							(# = −
1
3
(N 

'o"*&6(# = 'o4 ?−
1
3
(NA = −

1
3
'o4(N = −

1
3
o4 + * = −

1
3
o"*&6 + * 
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14.'o6(o6 + 1)#(# 

Solución: 

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.4, 

N = o6 + 1										 ⇒ 									(N = o6(# 

'o6(o6 + 1)#(# = '(N)#(N =
1
3
N& + * =

1
3
(o6 + 1)& + * 

 

15.'
o√6

√#
(# 

Solución: 

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.15a, 

N = √# 											⇒ 							(N =
1

2√#
(#											 ⇒ 							

1

√#
(# = 2(N 

'
o√6

√#
(# = 'o4(2(N) = 2'o4(N = 2o4 + * = 2o√6 + * 

 

16.'
o*6

1 + o*6
(# 

Solución: 

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.14, 

N = 1 + o*6 											⇒ 							(N = −o*6(#											 ⇒ 									 o*6(# = −(N 

'
o*6

1 + o*6
(# = '

−(N
N

= −'
(N
N
= − lnN + * = − ln(1 + o*6) + * 

 

17.'
o6 + o*6

o6 − o*6
(# 

Solución: 

 Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.14, 



45 

N = o6 − o*6 												⇒ 									(N = (o6 + o*6)(# 

'
o6 + o*6

o6 − o*6
(# = '

(N
N
= lnN + * = ln(o6 − o*6) + * 

 

18.'
2o6 − 2o*6

(o6 + o*6)#
(# 

Solución: 

 Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.4, 

N = o6 + o*6 													⇒ 												(N = (o6 − o*6)(# 

'
2o6 − 2o*6

(o6 + o*6)#
(# = 2'

(o6 − o*6)
(o6 + o*6)#

(# = 2'
(N
N#

= 2'N*#(N = −2N*" + *

= −
2
N
+ * = −

2
o6 + o*6

+ * 

 

19.'
2## + 7# − 3

# − 2
(# 

Solución: 

Primero aplicamos la división larga, y después evaluamos la integral. 

			de1 + ze − { x-2 

−de1 + fe 2x+11 

			//						gge − {  

										−gge + dd  

															//						g|	  

 

'
2## + 7# − 3

# − 2
(# = '?2# + 11 +

19
# − 2

A(#

= 2'#(# + 11'(# + 19'
(#
# − 2

 

Evaluamos las dos primeras integrales de manera inmediata con los teoremas 1.4 y 
1.2. La última integral aplicamos el método del cambio de variable, 
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N = # − 2											 ⇒ 									(N = (# 

'
2## + 7# − 3

# − 2
(# = 2 ∙

1
2
## + 11# + 19'

(N
N
= ## + 11# + 19 ln N + *

= ## + 11# + 19 ln(# − 2) + * 

 

20.'
#& − 6# − 20

# + 5
(# 

Solución: 

Primero aplicamos la división larga, y después evaluamos la integral. 

				e0 − }e − d~ e + h 

  −e0 − he1 ## − 5# + 19 

			//				−he1 − }e  

		he1 + dhe  

										//							g|e − d~  

																		−g|e − |h  

																								//		−ggh  

 

'
#& − 6# − 20

# + 5
(# = '?## − 5# + 19 −

115
# + 5

A(#

= '##(# − 5'#(# + 19'(# − 115'
(#
# + 5

 

Evaluamos las tres primeras integrales de manera inmediata con los teoremas 1.4 y 
1.2. La última integral aplicamos el método del cambio de variable, 

N = # + 5											 ⇒ 									(N = (# 

'
#& − 6# − 20

# + 5
(# =

1
3
#& − 5 ∙

1
2
## + 19# − 115'

(N
N

=
1
3
#& −

5
2
## + 19# − 115 ln N + *

=
1
3
#& −

5
2
## + 19# − 115 ln(# + 5) + * 
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21.'
#& − 4## − 4# + 20

## − 5
(# 

Solución: 

Primero aplicamos la división larga, y después evaluamos la integral. 

			e0 − fe1 − fe + d~ e1 − h 

−e0 											+ he # − 4 

		//		−fe1 + 	e		 + d~				  

												fe1 											− d~  

													//							e								//	  

 

'
#& − 6# − 20

# + 5
(# = 'F# − 4 +

#
## − 5

H(# = '#(# − 4'(# +'
#(#
## − 5

 

Evaluamos las dos primeras integrales de manera inmediata con los teoremas 1.4 y 
1.2. La última integral aplicamos el método del cambio de variable, 

N = ## − 5											 ⇒ 									(N = 2#(#											 ⇒ 									#(# =
1
2
(N 

'
#& − 6# − 20

# + 5
(# =

1
2
## − 4# +

1
2
'
(N
N
+ * =

1
2
## − 4# +

1
2
ln N + *

=
1
2
## − 4# +

1
2
ln(## − 5) + * 

 

22.'
ln# 3#
#

(# 

Solución: 

Utilizamos el método de integración del cambio de variable. 

N = ln 3# 													⇒ 												(N =
1
3#
(3)(# =

(#
#

 

'
ln# 3#
#

(# = '(ln 3#)#
(#
#
= 'N#(N =

1
3
N& + * =

1
3
(ln 3#)& + * 
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23.'
2 + ln# #
#(1 − ln #)

(# 

Solución: 

Evaluamos la integral indefinida mediante el método del cambio de variable, por lo 
tanto, 

N = 1 − ln # 								⇒ 								 ln # = 1 − N										 ⇒ 							
(#
#
= −(N 

'
2 + ln# #
#(1 − ln #)

(# = '
2 + (ln #)#

(1 − ln #)
(#
#
= −'

2 + (1 − N)#

N
(N

= −'
2 + 1 − 2N + N#

N
(N = −'

3 − 2N + N#

N
(N

= −3'
(N
N
+ 2'

N
N
(N −'

N#

N
(N

= −3'
(N
N
+ 2'(N −'N(N 

Para evaluar cada integral utilizamos los teoremas 1.14, 1.1 y 1.4, respectivamente, 
y sustituimos el cambio de variable de N, en consecuencia, 

'
2 + ln# #
#(1 − ln #)

(# = −3 lnN + 2N −
1
2
N# + *

= −3 ln|1 − ln #| + 2(1 − ln|#|) −
1
2
(1 − ln|#|)# + *

= −3 ln|1 − ln #| + 2 − 2 ln|#|	 −
1
2
(1 − 2 ln|#| + ln#|#|) + *

= −3 ln|1 − ln #| + 2 − 2 ln|#| −
1
2
+ ln|#| −

1
2
ln#|#| + *

= −3 ln|1 − ln #| − ln|#| −
1
2
ln#|#| +

3
2
+ *

= −3 ln|1 − ln #| − ln|#| −
1
2
ln#|#| + *" 

 

24.'
2 ln # + 1

#[(ln #)# + ln #]
(# 

Solución: 
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Evaluamos la integral utilizando el método del cambio de variable, por lo tanto, 

N = (ln #)# + ln # 													⇒ 									(N = ?2 ln # ∙
1
#
+
1
#
A (# 

(N = ?
2 ln # + 1

#
A(# 

'
2 ln # + 1

#[(ln #)# + ln #]
(# = '

1
[(ln #)# + ln #]

2 ln # + 1
#

(# = '
1
N
(N = lnN + *

= ln[(ln #)# + ln #] + * 

 

25.'
#' − 2#& + 5## − 2

#& + 1
(# 

Solución: 

Primero aplicamos la división larga, y después evaluamos la integral. 

				e< − de0 + he1 − d e0 + g 
  −e< 												− e1 ## − 2 
		//				−de0 + fe1 − d	  
														de0 												+ d  
														//							fe1			//  

 

'
#' − 2#& + 5## − 2

#& + 1
(# = 'Q## − 2 +

4##

#& + 1
R(#

= '##(# − 2'(# + 4'
##

#& + 1
 

Para evaluar las dos primeras integrales utilizamos los teoremas 1.4 y 1.1, 
respectivamente, y en la última integral aplicamos el método de integración por 
cambio de variable, por lo tanto, 

N = #& + 1									 ⇒ 								(N = 3##(#									 ⇒ 							
1
3
(N = ##(# 

'
#' − 2#& + 5## − 2

#& + 1
(# =

1
3
#& − 2# + 4'

1
3(N

N
=
1
3
#& − 2# +

4
3
ln N + *

=
1
3
#& − 2# +

4
3
ln(#& + 1) + * 
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26.'-=o=(@ 

Solución: 

Se utiliza el teorema de integración 1.16. 

'-=o=(@ = '(-o)=(@ =
(-o)=

ln(-o)
+ * 

En el denominador aplicamos propiedad de logaritmo natural de un producto, 
ln(-x) = ln - + ln x, en consecuencia, 

'-=o=(@ =
(-o)=

ln - + ln o
+ * =

(-o)=

ln - + 1
+ * 

 

27.'56
"%#6(2#& + 1)(# 

Solución: 

Primero realizamos el cambio de variable, y después evaluamos la integral 
utilizando el teorema 1.16 (a). 

N = #) + 2#								 ⇒ 							(N = (4#& + 2)(#									 ⇒ 							
1
2
(N = (2#& + 1)(# 

'56
"%#6(2#& + 1)(# = '54

1
2
(N =

1
2
'54(N =

1
2
54

ln 5
+ * =

56
"%#6

2 ln 5
+ * 

 

28.'2>?@ 6 cos # (# 

Solución: 

Realizamos un cambio de variable, y después utilizamos el teorema 1.16a. 

, = sin # 								⇒ 						(, = cos # (# 

'2>?@ 6 cos # (# = '28(, =
24

ln 2
+ * =

2>?@ 6

ln 2
+ * 

 

29.'oA2B
#
3B

#
(M 
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Solución: 

Aplicamos el método del cambio de variable y después empleamos el teorema 1.16. 

N = oA 								⇒ 							(N = oA(M 

'oA2B
#
3B

#
(M = 'oA(2 ∙ 3)B

#
(M = '6B

#
(oA(M) = '64(N =

64

ln 6
+ *

=
6B

#

ln 6
+ * 

 

30.'
o6 − 1
o6 + 1

(# 

Solución: 

Aplicamos artificio matemático en el numerador tal que se tenga un factor lineal 
idéntico al del denominador, en consecuencia, 

'
o6 − 1
o6 + 1

(# = '
2o6 − o6 − 1

o6 + 1
(# = '

2o6 − (o6 + 1)
o6 + 1

(#

= '
2o6

o6 + 1
(# −'

o6 + 1
o6 + 1

(# = 2'
o6

o6 + 1
(# − '(# 

La primera integral es evaluada mediante el método del cambio de variable y 
aplicamos el teorema 1.14, mientras que la segunda integral usamos el teorema 1.1, 
por lo tanto, 

, = o6 + 1								 ⇒ 								(, = o6(# 

'
o6 − 1
o6 + 1

(# = 2'
(,
,
− # + * = 2 ln , − # + * = 2 ln(o6 + 1) − # + * 

 

31.'
tan #

ln(cos #)
(# 

Solución: 

Este problema es conveniente pensar en aplicar en el denominador el método del 
cambio de variable. Debemos recordar que la identidad trigonométrica de tangente 
está dada por, 

tan # =
sin #
cos #
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Utilizamos cambio de variable, tal que, 

, = ln(cos #) 						⇒ 								(, = −
sin #
cos #

(#						 ⇒ 								
sin #
cos #

(# = −(, 

'
tan#

ln(cos #)
(# = '

sin #
cos # ln(cos #)

(# = '
1

ln(cos #)
sin # (#
cos #

= −'
(,
,

= − ln|,| + * = − ln|ln(cos #)| + * 

 

32.'
1

1 − √#
(# 

Solución: 

Aplicamos cambio de variable,   

, = 1 − √# 					⇒ 				√# = 1 − ,				 ⇒ 		
(#

2√#
= −(,			 ⇒ 				(# = −2(1 − ,)(, 

'
1

1 − √#
(# = '

1
,
[−2(1 − ,)(,] = −2'

1 − ,
,

(, = −2'
1
,
(, + 2'

,
,
(,

= −2'
(,
,
+ 2'(, = −2 ln , + 2, + *

= −2 ln�1 − √#� + 2I1 − √#J + *

= −2 ln�1 − √#� + 2 − 2√# + * = −2√# − 2 lnI√# − 1J + * 

 

33.'
2#

## + 6# + 13
(# 

Solución: 

Aplicamos artificio matemático en el numerador y descomponemos la fracción para 
evaluar la integral indefinida mediante algún teorema y/o cambio de variable, 

'
2#

## + 6# + 13
(# = '

2# + 6 − 6
## + 6# + 13

(#

= '
2# + 6

## + 6# + 13
(# −'

6
## + 6# + 13

(# 
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La primera integral evaluamos mediante el método del cambio de variable y 
aplicamos el teorema 1.14, mientras que la segunda integral (completamos 
cuadrados) utilizamos el teorema 1.12 (N = # + 3, (N = (#, - = 2) , por lo tanto, 

, = ## + 6# + 13								 ⇒ 								(, = (2# + 6)(# 

'
2#

## + 6# + 13
(# = '

(N
N
− '

6
(## + 6# + 9) + 4

(#

= ln|N| − 6'
(#

(# + 3)# + 4

= ln|## + 6# + 13| − 6 ∙
1
2
tan*" ?

# + 3
2

A + *

= ln|## + 6# + 13| − 3 tan*" ?
# + 3
2

A + * 

 

34.'
(#

#( + #
 

Solución: 

La fracción de la integral se divide para #(, por lo tanto, 

'
(#

#( + #
= '

(#
#(

#(
#( +

#
#(

= '

(#
#(

1 + 1
#'

 

realizamos cambio de variable para la expresión del denominador, en consecuencia, 

, = 1 +
1
#'
								⇒ 								(, = −

5
#(
(#								 ⇒ 							

(#
#(

= −
1
5
(,	 

'
(#

#( + #
= '

−
1
5(,

,
= −

1
5
'
(,
,
= −

1
5
ln|,| + * = −

1
5
ln Ä1 +

1
#'
Ä + * 

 

35.'(7 − 9 sin 9#)5,6%CD> -6(# 

Solución: 

Evaluamos la integral mediante el método del cambio de variable y aplicamos el 
teorema 1.16, por lo tanto, 
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, = 7# + cos 9# 								⇒ 								(, = (7 − 9 sin 9#)(# 

'(7 − 9 sin 9#)5,6%CD> -6(# = '58(, =
58

ln 5
+ * =

5,6%CD> -6

ln 5
+ * 

 

36.'
# + 1

## − 2# + 2
(# 

Solución: 

Completamos cuadrados en el denominador, por lo tanto, 

'
# + 1

## − 2# + 2
(# = '

# + 1
(## − 2# + 1) + 1

(# = '
# + 1

(# − 1)# + 1
(# 

Aplicamos cambio de variable en el denominador,  

, = # − 1								 ⇒ 								# = , + 1								 ⇒ 							(# = (,	 

'
# + 1

## − 2# + 2
(# = '

, + 1 + 1
,# + 1

(, = '
, + 2
,# + 1

(,

= '
,

,# + 1
(, +'

2
,# + 1

(, 

En la primera integral nuevamente aplicamos cambio de variable (usamos después 
teorema 1.14) y la segunda integral empleamos el teorema 1.12, en consecuencia, 

N = ,# + 1								 ⇒ 								(N = 2,(,								 ⇒ 							,(, =
1
2
(#	 

'
# + 1

## − 2# + 2
(# =

1
2
'
(N
N
+ 2 tan*"(,) + * =

1
2
ln|N| + 2 tan*"(# − 1) + *

=
1
2
ln|,# + 1| + 2 tan*"(# − 1) + *

=
1
2
ln|(# − 1)# + 1| + 2 tan*"(# − 1) + * 

 

1.4. Integrales definidas. 

En las secciones 1.1 a 1.3 se estudiaron las integrales indefinidas, ya que estas 
proporcionan la relación inversa entre las integrales y derivadas. En esta sección 
seguiremos evaluando las integrales, pero como definidas, de acuerdo con el 
siguiente teorema, 
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Teorema 1.17: 

Sea una función ! continua e integrable en el intervalo [a, b], y sea % cualquier 
antiderivada de ! en el mismo intervalo [a, b], entonces:  

' !(#)(#
7

:
= %(x) − %(-) 

A continuación, se desarrollan ejercicios de integración definida utilizando los 
teoremas 1.1 a 1.16 que fueron estudiados en las secciones 1.1 a 1.3, y 
posteriormente evaluamos el resultado obtenido según el teorema 1.17. 

1.' (4#& + 7)(#
#

"
 

Solución: 

' (4#& + 7)(#
#

"
= 4' #&(#

#

"
+ 7' (#

#

"
= Ä4 ∙

1
4
#) + 7#Ä

"

#

= [2) + 7(2)] − [1) + 7(1)] = 16 + 14 − 1 − 7 = 22 

 

2.' (4 sin # − 3 cos #)(#
E

.
 

Solución: 

' (4 sin # − 3 cos #)(#
E

.
= 4' sin # (#

E

.
− 3' cos # (#

E

.
= [−4 cos # − 3 sin #].

E

= (−4 cos Å − 3 sin Å) − (−4 cos 0 − 3 sin 0)

= −4(−1) − 3(0) + 4(1) − 3(0) = 4 + 4 = 8 

` 

3.' |sin #|(#
&E/#

.
 

Solución: 

Para evaluar esta integral definida, debemos considerar el comportamiento del 
valor absoluto de la función sin # dentro del intervalo t0, &

#
Åu. La función sin # es 

positiva en [0, Å] y negativa en tÅ, &
#
Åu, , por lo tanto, el valor absoluto se define por 

partes como: 
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|sin #| = Ç
sin # ÉÑ	0 ≤ # ≤ Å
−sin # ÉÑ	Å ≤ # ≤ 3Å/2 

 Con base en esta definición por tramos, la integral se descompone en dos partes: 

' |sin #|(#
&E/#

.
= ' sin # (#

E

.
+' (−sin #)(#

&E/#

E
= ' sin # (#

E

.
−' sin # (#

&E
#

E

= [−cos #].
E − [−cos #]E

&E/#

= [(− cos Å) − (−cos 0)	] + m?cos
3Å
2
A − I(− cos Å)Jn

= −(−1) − (−1) + (0) − (−1)

= 3 

 

4.' |sin 2#|(#
E

*E&

 

Solución: 

Al igual que en el ejercicio anterior, esta integral se resuelve considerando la 
definición por tramos del valor absoluto de la función involucrada. En este caso, 
analizamos el comportamiento de: 

|sin 2#| = Ç
− sin 2# para	 − Å/3 ≤ # ≤ 0
sin 2# para											0 ≤ # ≤ Å 

En consecuencia, Con base en esta regla de correspondencia, descomponemos la 
integral: 

' |sin 2#|(#
E

*E&

= ' −sin 2# (#
.

*E&

+' sin 2# (#
E

.

= Ä−?−
1
2
cos 2#AÄ

*E&

.

+ Ä−
1
2
cos 2#Ä

.

E

= Ä
1
2
cos 2#Ä

*E&

.

− Ä
1
2
cos 2#Ä

.

E

= Çm
1
2
cos 0n − m

1
2
cos ?−

2
3
ÅAná − Çm

1
2
cos 2Ån − m

1
2
cos 0ná

=
1
2
(1) −

1
2
?−

1
2
A − m

1
2
(1) −

1
2
(1)n =

1
2
+
1
4
=
3
4
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5.' (# − 2|#|)(#
#

*"
 

Solución: 

Para resolver esta integral definida, primero debemos considerar la definición por 
tramos de la función valor absoluto. Sabemos que: 

|#| = à−# 			ÉÑ − 1 ≤ # ≤ 0
# ÉÑ	0 ≤ # ≤ 2

 

Con base en esta definición, descomponemos la integral en dos partes, dividiendo 
el intervalo en los puntos donde la función cambia de forma: 

' (# − 2|#|)(#
#

*"
= ' [# − 2(−#)](#

.

*"
+' [# − 2(#)](#

#

.

= ' (# + 2#)(#
.

*"
+' (# − 2#)(#

#

.
= 3' #(#

.

*"
−' #(#

#

.

= m
3
2
##n

*"

.

− m
1
2
##n

.

#

= m
3
2
(0)# −

3
2
(−1)#	n − m

1
2
(2)# −

1
2
(0).n

= −
3
2
− 2 = −

7
2

 

 

6.' |## − #|(#
"

*"
 

Solución: 

Para resolver esta integral definida, debemos identificar primero cómo se comporta 
la función dentro del valor absoluto. Observamos que: 

## − # = #(# − 1) 

Esta expresión cambia de signo dentro del intervalo [−1, 1] en los puntos # = 0 y 
# = 1, por lo que es necesario definir |## − #| por tramos: 

|## − #| = Ç ## − # 			ÉÑ − 1 ≤ # ≤ 0
−(## − #) ÉÑ	0 ≤ # ≤ 1

 

Por lo tanto, la integral definida se puede evaluar, 
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' |## − #|(#
"

*"
= ' (## − #)(#

.

*"
+' −(## − #)(#

"

.

= m
1
3
#& −

1
2
##n

*"

.

− m
1
3
#& −

1
2
##n

.

"

= Ç0 − m
1
3
(−1)& −

1
2
(−1)#	ná − Çm

1
3
(1)& −

1
2
(1)#n − 0á

=
1
3
+
1
2
−
1
3
+
1
2
= 1 

 

7.' �3√# − 6�(#
"(

.
 

Solución: 

Para resolver esta integral definida, es necesario analizar la función dentro del 
valor absoluto. Consideramos: 

!(#) = 3√# − 6 

La expresión cambia de signo cuando 3√# − 6 = 0, es decir, cuando: 

√# = 2					 ⇒ 								# = 4 

Por lo tanto, la función �3√# − 6� se define por tramos de la siguiente manera: 

�3√# − 6� = â
−I3√# − 6J ÉÑ		0 ≤ # ≤ 4		

3√# − 6 ÉÑ		4 ≤ # ≤ 16
	

Con base en esto, descomponemos la integral original: 

' �3√# − 6�(#
"(

.
= −' I3√# − 6J(#

)

.
+' I3√# − 6J(#

"(

.

= −' I3#"/# − 6J(#
)

.
+' I3#"/# − 6J(#

"(

.

= −m3 ∙
2
3
#&/# − 6#n

.

)

+ m3 ∙
2
3
#&/# − 6#n

)

"(

= −t2I√#J
&
− 6#u

.

)
+ t2I√#J

&
− 6#u

)

"(

= −{[2(2)& − 6 ∙ 4] − 0} + {[2(4)& − 6 ∙ 16] − [2(2)& − 6 ∙ 4]}

= −16 + 24 + 128 − 96 − 16 + 24 = 48 
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8.'
sin ^ + sin ^ tan# ^

sec# ^
(^

E
&

.
 

Solución: 

Para simplificar esta integral, primero identificamos factores comunes en el 
numerador y luego aplicamos una identidad trigonométrica fundamental,  sec# ^ =
1 + tan# ^. Por lo tanto, 

'
sin ^ + sin ^ tan# ^

sec# ^
(^

E
&

.
= '

sin ^ (1 + tan# ^)
sec# ^

(^

E
&

.
= '

sin ^ sec# ^
sec# ^

(^

E
&

.

= ' sin ^ (^

E
&

.
= [−cos ^].

E
& = t−cos F

Å
3
Hu − [− cos(0)]

= −
1
2
+ 1 =

1
2

 

 

9.' #G5 − ##(#
#

"
 

Solución: 

Para resolver esta integral definida, aplicamos un cambio de variable que permita 
simplificar la expresión compuesta por una función cuadrática dentro de una raíz 
multiplicada por #. Sean: 

, = 5 − ## 									⇒ 									(, = −2#(#									 ⇒ 							#(# = −
1
2
(, 

Sustituyendo, se obtiene, 

' #G5 − ##(#
#

"
= ' (5 − ##)"/##(#

#

"
= ' ,"/# ?−

1
2
(,A

#

"
= −

1
2
' ,"/#(,
#

"

= Ä−
1
2
∙
2
3
,&/#Ä

"

#

= −
1
3
ÄFG5 − ##H

&
Ä
"

#

= −
1
3
mFG5 − 2#H

&
− FG5 − 1#H

&
n = −

1
3
[1 − 8] =

7
3

 

 

10.'
# + 5
# − 3

(#
#

.
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Solución: 

Para simplificar la expresión del integrando, aplicamos un artificio algebraico en el 
numerador, evitando así recurrir a la división larga. La idea es escribir el numerador 
de forma que incluya un término igual al denominador. Observamos que: 

# + 5
# − 3

=
# − 3 + 8
# − 3

=
# − 3
# − 3

+
8

# − 3
= 1 +

8
# − 3

 

Sustituimos en la integral y evaluamos la misma aplicando el teorema 1.1 para la 
primera integral y en la segunda el método del cambio de variable, 

N = # − 3									 ⇒ 									(N = (#	 

'
# + 5
# − 3

(#
#

.
= ' ?1 +

8
# − 3

A(#
#

.
= ' (#

#

.
+ 8'

(#
# − 3

#

.
= m# + 8'

(N
N
n
.

#

= [# + 8 ln|N|].
# = [# + 8 ln|# − 3|].

#

= [2 + 8 ln|2 − 3|] − [0 + 8 ln|0 − 3|] = 2 + 8 ln 1 − 8 ln 3

= 2 − 8 ln 3 

 

11.'
o6

1 + o#6
(#

#

.
 

Solución: 

En esta integral definida, aplicamos un cambio de variable que permita simplificar 
la expresión del integrando, es decir, 

, = o6 							⇒ 						(, = o6(#								 ⇒ 						(# =
(,
o6

=
(,
,

 

Sustituyendo, se obtiene, 

'
o6

1 + o#6
(#

#

.
= '

o6

1 + (o6)#
(#

#

.
= '

,
1 + ,#

(,
,
	

#

.
= '

(,
1 + ,#

	
#

.
= |tan*" ,|.

#

= |tan*" o6|.
# = tan*" o# − tan*" o. = tan*" 7.389 − tan*" 1

= 0.651	å-( 

 

12.'
##

(# − 2)#
(#

)

&
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Solución: 

Para simplificar esta integral definida, aplicamos un cambio de variable que nos 
permita expresar todo el integrando en términos de una sola variable: 

, = # − 2							 ⇒ 						# = , + 2								 ⇒ 						(# = (, 

Sustituyendo, se obtiene, 

'
##

(# − 2)#
(#

)

&
= '

(, + 2)#

,#
(,

)

&
= '

,# + 4, + 4
,#

(,
)

&

= ' Q
,#

,#
+
4,
,#
+
4
,#
R(,

)

&
= ' (,

)

&
+ 4'

(,
,

)

&
+ 4' ,*#(,

)

&

= Ä, + 4 ln , −
4
,
Ä
&

)

= Ä(# − 2) + 4 ln(# − 2) −
4

# − 2
Ä
&

)

= m(2) + 4 ln(2) −
4
2
n − m(1) + 4 ln(1) −

4
1
n

= 2 + 4 ln 2 − 2 − 1 + 4 = 4 ln 2 + 3 

 

13.'
√#) − 1

#
(#

&

"
 

Solución: 

Antes de resolver esta integral definida, simplificamos el radicando factorizando la 
expresión,  

'
√#) − 1

#
(#

&

"
= '

G(## − 1)(## + 1)
#

(#
&

"
 

Para avanzar, aplicamos un cambio de variable. Sea: 

## = ,							 ⇒ 										# = √, 										⇒ 							(# =
1

2√,
(, 

Sustituyendo en la integral, se obtiene, 

'
√#) − 1

#
(#

&

"
= '

G(, − 1)(, + 1)

√,

1

2√,
(,

&

"
=
1
2
'

√,# − 1
,

(,
&

"
 

Ahora aplicamos un segundo cambio de variable: 
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N = G,# − 1 							⇒ 						(N =
2,(,

2√,# − 1
						⇒ 					(, =

N
,
(N 

'
√#) − 1

#
(#

&

"
=
1
2
'

N
,
N
,
(N

&

"
=
1
2
'

N#

,#
(N

&

"
 

Pero, N = √,# − 1 							⇒ 						 N# = ,# − 1								 ⇒ 						 ,# = N# + 1. Ahora 
aplicamos un artificio algebraico en el numerador para simplificar, tal que, 
tengamos un factor cuadrático idéntico al del denominador, es decir, 

'
√#) − 1

#
(#

&

"
=
1
2
'

(N# + 1) − 1
N# + 1

(N
&

"
=
1
2
'

N# + 1
N# + 1

(N
&

"
−
1
2
'

1
N# + 1

(N
&

"

=
1
2
' (N
&

"
−
1
2
'

1
N# + 1

(N
&

"
= Ä

1
2
N −

1
2
tan*"(N)Ä

"

&

= Ä
1
2
G,# − 1 −

1
2
tan*" FG,# − 1HÄ

"

&

= Ä
1
2
G#) − 1 −

1
2
tan*" FG#) − 1HÄ

"

&

= m
1
2
√80 −

1
2
tan*"I√80Jn − m0 −

1
2
tan*"(0)n

=
1
2
√16 ∙ 5 − tan*"I√16 ∙ 5J = 2√5 −

1
2
tan*"I4√5J 

 

14.'
#

√# + 1
(#

-

.
 

Solución: 

Para simplificar esta integral definida, aplicamos un cambio de variable que permita 
eliminar la raíz cuadrada. Sea: 

, = √# 							⇒ 						(, =
1

2√#
(#								 ⇒ 						(# = 2√#(, = 2,(, 

Sustituyendo, se obtiene, 

'
#

√# + 1
(#

-

.
= '

,#

, + 1
(2,(,)

-

.
= 2'

,&

, + 1
(,

-

.
 

Para resolver esta integral, se usa un artificio algebraico que permita simplificar el 
cociente. Aplicamos división polinómica para expresar: 
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,&

, + 1
=
,& + ,# − ,# − , + , + 1 − 1

, + 1
=
,#(, + 1) − ,(, + 1) + (, + 1) − 1

, + 1
 

,&

, + 1
=
,#(, + 1)
, + 1

−
,(, + 1)
, + 1

+
(, + 1)
, + 1

−
1

, + 1
= ,# − , + 1 −

1
, + 1

 

Sustituyendo, se obtiene, 

'
#

√# + 1
(#

-

.
= 2' ?,# − , + 1 −

1
, + 1

A (,
-

.

= 2 ç' ,#(,
-

.
−' ,(,

-

.
+' (,

-

.
−'

(,
, + 1

-

.
é 

Las primeras tres integrales son de solución inmediata (véase teoremas 1.1 a 1.4), y 
la última integral evaluamos mediante cambio de variable, por lo tanto, 

N = , + 1									 ⇒ 									(N = (, 

'
#

√# + 1
(#

-

.
= 2 Ä

1
3
,& −

1
2
,# + , −'

(N
N
Ä
.

-

= 2 Ä
1
3
I√#J

&
−
1
2
# + √# − lnNÄ

.

-

= 2 Ä
1
3
I√#J

&
−
1
2
# + √# − ln(, + 1)Ä

.

-

= 2 Ä
1
3
I√#J

&
−
1
2
# + √# − lnI√# + 1JÄ

.

-

= 2 Çm
1
3
I√9J

&
−
1
2
(9) + √9 − lnI√9 + 1Jn − [− ln(1)]á

= 2 m
1
3
(3)& −

9
2
+ 3 − ln(3 + 1)n − [0] = 15 − 2 ln 4 

 

15.'
1

s(1 + ##) lnI# + √1 + ##J
(#

#

.
 

Solución: 

Aplicando propiedades de potenciación √-x = √- ∙ √x, se obtiene, 

'
1

s(1 + ##) lnI# + √1 + ##J
(#

#

.
= '

1

G(1 + ##)slnI# + √1 + ##J
(#

#

.
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Evaluamos la integral aplicando el método del cambio de variable,  

, = ln F# + G1 + ##H 																										⇒ 					(, =
1

I# + √1 + ##J
m1 +

#

√1 + ##
n (# 

(, =
(#

I# + √1 + ##J
ç
√1 + ## + #

√1 + ##
é 	⇒ 					(, =

(#

√1 + ##
 

'
1

s(1 + ##) lnI# + √1 + ##J
(#

#

.
= '

1

slnI# + √1 + ##J

(#

G(1 + ##)
	

#

.

= '
1

√,
(,

#

.
= ' ,*

"
#(,

#

.
= �2√,�.

#
= è2sln F# + G1 + ##Hè

.

#

= ç2slnI2 + √5Jé − ç2slnI0 + √1Jé = 2slnI2 + √5J 

 

16.'
2# + 3

√4 − ##
(#

#

.
 

Solución: 

Dado que ambos términos del numerador comparten el mismo denominador, 
descomponemos la integral en dos partes:  

'
2# + 3

√4 − ##
(#

#

.
= '

2#

√4 − ##
(#

#

.
+'

3

√4 − ##
(#

#

.
 

Ahora, resolvemos la primera integral mediante cambio de variable, y la segunda 
usando el Teorema 1.11, que corresponde a una forma estándar de integral:  

, = 4 − ## 								⇒ 							(, = −2#(#								 ⇒ 							2#(# = −(, 

'
2# + 3

√4 − ##
(#

#

.
= '

−(,

√,

#

.
+ 3'

(#

√2# − ##

#

.
= −' ,*"/#(,

#

.
+ 3sin*" F

#
2
H

= è−
,"/#

1/2
+ 3 sin F

#
2
Hè
.

#

= ê−2G4 − ## + 3sin F
#
2
Hê
.

#

= ë−2√0 + 3 sin(1)í − ë−2√4 + 3 sin(0)í = 3F
Å
2
H + 4

=
3
2
Å + 4 
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17.' [cos # − (cos #)#]# sin # (#
*E/#

*E
 

Solución: 

Resolvemos la integral aplicando un cambio de variable que simplifica la expresión. 
Sea: 

, = cos # 								⇒ 							(, = −sin # (#								 ⇒ 						 sin # (# = −(, 

Después, se ajustan los límites de integración. Cuando # = −Å, entonces , =
cos(−Å) = −1 y cuando	# = − E

#
,	se	tiene  , = cos(− E

#
) = 0. Por lo tanto, 

' [cos # − (cos #)#]# sin # (#
*E#

*E
= ' (, − ,#)#(−(,)

.

*"
= −' (, − ,#)#(,

.

*"

= −' (,# − 2,& + ,))(,
.

*"
= Ä−

1
3
,& +

1
2
,) −

1
5
,'Ä

*"

.

= 0 − m−
1
3
(−1)& +

1
2
(−1)) −

1
5
(−1)'n = − m

1
3
+
1
2
+
1
5
n

= −
31
30

 

 

18.'
√#
$

√# − √#
! (#

()

"
 

Solución: 

Evaluamos la integral definida aplicando el cambio de variable,  

, = √#
$ 									⇒ 								 ,( = #								 ⇒ 									(# = 6,'(, 

'
√#
$

√# − √#
! (#

()

"
= '

(#)"/(

(#)"/# − (#)"/&
(#

()

"
= '

(,()"/(

(,()"/# − (,()"/&
(#

()

"

= '
,

,& − ,#
(6,'(,)

()

"
= 6'

,(

,#(, − 1)
(,

()

"

= 6'
,)

, − 1
(,

()

"
 

Aplicamos división larga, 
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'
√#
$

√# − √#
! (#

()

"
= 6' ?,& + ,# + , + 1 +

1
, − 1

A (,
()

"

= Ä
3
2
,) + 2,& + 3,# + 6, + 6 ln(, − 1)Ä

"

()

= Ä
3
2
I√#
$ J

)
+ 2I√#

$ J
&
+ 3I√#

$ J
#
+ 6√#

$ + 6 lnI√#
$ − 1JÄ

"

()

= Ä
3
2
I√#
! J

#
+ 2√# + 3√#

! + 6√#
$ + 6 lnI√#

$ − 1JÄ
"

()

= Çm
3
2
I√64
! J

#
+ 2√64 + 3√64

! + 6√64
$ + 6 lnI√64

$ − 1Jn

− m
3
2
I√1
! J

#
+ 2√1 + 3√1

! + 6√1
$ + 6 lnI√1

$ − 1Jná

= Ç[24 + 16 + 12 + 12 + 6 ln(1)] − m
3
2
+ 2 + 3 + 6 + 6 ln(0)ná

= [64] − m
25
2
+∞n = ∞			diverge 

 

19.'
cos #

sin# # √1 + sin# #
(#

)
&E

E
&

 

Solución: 

Observamos que la integral no puede resolverse directamente. Por tanto, aplicamos 
un cambio de variable para simplificar la expresión. 

, = sin # 							⇒ 						(, = cos # (# 

Sustituyendo, se obtiene, 

'
cos #

sin# # √1 + sin# #
(#

)
&E

E
&

= '
(,

,#√1 + ,#

)
&E

E
&

 

Aunque la técnica de sustitución trigonométrica constituye una posible vía de 
resolución (no se aborda en el presente capítulo), se opta por un procedimiento 
alternativo basado en un cambio de variable que permite simplificar la integral. 

N =
1
,
									⇒ 								, =

1
N
										⇒ 								(, = −

1
N#
(N 
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'
cos #

sin# # √1 + sin# #
(#

)
&E

E
&

= '
F−

1
N# (NH

F
1
NH

#
s1 + F

1
NH

#

)
&E

E
&

= −'
F
1
N#H

1
N#
s1 + 1

N#

(N

)
&E

E
&

= −'
(N

sN
# + 1
N#

)
&E

E
&

= −'
(N

√N# + 1
N

)
&E

E
&

= −'
N

√N# + 1
(N

)
&E

E
&

 

Nuevamente aplicamos un cambio de variable, 

@ = N# + 1									 ⇒ 								(@ = 2N(N										 ⇒ 								N(N =
1
2
(@ 

'
cos #

sin# # √1 + sin# #
(#

)
&E

E
&

= −'
1

√@
∙
1
2
(@

)
&E

E
&

= −
1
2
' @*"/#(@

)
&E

E
&

= �@"/#�E
&

)
&E 

Finalmente, sustituimos las variables y evaluamos la integral definida, 

'
cos #

sin# # √1 + sin# #
(#

)
&E

E
&

= ê−GN# + 1êE
&

)
&E = ó−p?

1
,
A
#

+ 1ó
E
&

)
&E

= ó−p
1 + ,#

,#
ó
E
&

)
&E

= è−
√1 + ,#

,
è
E
&

)
&E

= è−
√1 + sin# #

sin #
è
E
&

)
&E

= −

p1 + Q−√
3
2 R

#

−√
3
2

+

p1 + Q√
3
2 R

#

√3
2

= òq

√7
2
√3
2

r +q

√7
2
√3
2

rô 

'
cos #

sin# # √1 + sin# #
(#

)
&E

E
&

=
√7

√3
+
√7

√3
=
2√7

√3
 

 

20.'
2# + 3

√4 − ##
(#

#

.
 

Solución: 

Descomponemos la integral en dos términos, utilizando la linealidad de la integral: 



68 

'
2# + 3

√4 − ##
(#

#

.
= '

2#

√4 − ##
(#

#

.
+'

3

√4 − ##
(#

#

.
 

Para resolver la primera integral aplicamos un cambio de variable, y para la segunda 
usamos el teorema 1.11, en consecuencia, 

, = 4 − ## 								⇒ 							(, = −2#(#								 ⇒ 							2#(# = −(, 

'
2# + 3

√4 − ##
(#

#

.
= '

−(,

√,

#

.
+ 3'

(#

√2# − ##

#

.
= −' ,*"/#(,

#

.
+ 3sin*" F

#
2
H

= è−
,"/#

1/2
+ 3 sin F

#
2
Hè
.

#

= ê−2G4 − ## + 3sin F
#
2
Hê
.

#

= ë−2√0 + 3 sin(1)í − ë−2√4 + 3 sin(0)í = 3F
Å
2
H + 4

=
3
2
Å + 4 
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Capítulo 2: 
Técnicas de 
integración 
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2.1. Integración por partes. 

En esta sección se inicia con un par de integrales que ya están en capacidad de 
resolver. Primero evaluamos lo siguiente. 

'o*6(# = −o6 + * 

Esto fue bastante simple. A continuación, vamos a examinar, 

'#o6
%
(# =

1
2
o6

%
+ * 

Para hacer esta integral se utilizó los pasos de la integración por cambio de variable. 
De nuevo, bastante simple de hacer siempre que recuerdes cómo hacer cambio o 
sustitución de variable. Por cierto, hay que asegurarse de que pueden realizar este 
tipo de sustituciones de manera rápida y sencilla. A partir de ahora se sugiere 
realizar este tipo de sustituciones mentalmente. Si tienes que detenerte a escribirlas 
en cada problema, verás que te llevará mucho más tiempo resolverlos, aunque si 
realizan los pasos no debe afectar la respuesta al ejercicio. 

Suponga que la integral a evaluar es, 

'##o&6(# 

Es obvio que este tipo de integral no se puede evaluar mediante los pasos de la 
integración por cambio de variable. En consecuencia, para este tipo de problemas 
se debe utilizar la técnica de integración por partes. Dicha técnica se basa en la 
derivada del producto de dos funciones, definida por: 

ö6[!(#)i(#)] = !(#)i!(#) + i(#)!!(#) 

!(#)i!(#) = ö6[!(#)i(#)] − i(#)!!(#) 

 

Aplicando integrales en ambos extremos de la ecuación, se tiene que; 

'!(#)i!(#)(# = 'ö6[!(#)i(#)](# − 'i(#)!!(#) 

'!(#)i!(#)(# = !(#)i(#) − 'i(#)!!(#) 

Otra manera sencilla de entender la integración por partes es realizando unos 
cambios de variables elementales, 
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N = !(#) 																							⇒ 											(N = !!(#)(#	 

(, = i′(#)(#														 ⇒ 											, = i(#)	 

 

Finalmente, la ecuación de integración por partes se define como, 

'N(, = N, −',(N													(2.1) 

 

En los siguientes ejercicios resueltos se aplica la técnica de integración por partes, e 
inclusive se utilizan los teoremas tratados en el capítulo 1.  

1.'#√# + 3(# 

Solución: 

Se definen los valores de N y (,: 

N = #															(, = √# + 3(# 

Procedemos a derivar N e integrar (, (se realiza cambio de variable õ = # + 3 y 
(õ = (#) 

(N = (#													, = '√# + 3(# = 'õ"/#(õ =
2
3
õ&/# =

2
3
(# + 3)&/# 

'#√# + 3(# = N, −',(N = # ∙
2
3
(# + 3)&/# −'

2
3
(# + 3)&/#(#

=
2
3
#I√# + 3J

&
−
2
3
∙
2
5
I√# + 3J

'
+ *

=
2
3
#I√# + 3J

&
−
4
15
I√# + 3J

'
+ * 

 

2.'
#

√2# − 5
(# 

Solución: 

Se definen los valores de N y (,: 

N = #															(, =
(#

√2# − 5
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Se procede a derivar N e integrar (, (se realiza cambio de variable õ = 2# − 5 y 
(õ = 2(#, por lo que (# = "

#
(õ) 

(N = (#													, = '
(#

√2# − 5
=
1
2
'õ*"/# =

1
2
∙ 2õ"/# = (2# − 5)"/# 

'
#

√2# − 5
(# = N, −',(N = #(2# − 5)"/# −'(2# − 5)"/#(#

= #√2# − 5 −
1
2
'õ*"/# = #√2# − 5 −

1
2
∙
2
3
õ"/#

= #√2# − 5 −
1
3
	(2# − 5)&/# + *

= #√2# − 5 −
1
3
I√2# − 5J

&
+ * 

 

3.' ln 4# (# 

Solución: 

Se definen los valores de N y (,: 

N = ln 4# 															(, = (# 

Se procede a derivar N e integrar (, 

(N =
(#
#
																	, = '(# = # 

'ln4# (# = N, −',(N = # ln 4# −'# ∙
(#
#
= # ln 4# −'(#

= # ln 4# − # + * 

 

4.'#o&6(# 

Solución: 

Se definen los valores de N y (,: 

N = #																						(, = o&6(# 

Se procede a derivar N e integrar (, 
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(N = (#																	, = 'o&6(# =
1
3
o&6 

'#o&6(# = N, −',(N = # ∙
1
3
o&6 −'

1
3
o&6(# =

1
3
#o&6 −

1
3
∙
1
3
o&6 + *

=
1
3
#o&6 −

1
9
o&6 + * 

 

5.'# sin # (# 

Solución: 

Se definen los valores de N y (,: 

N = #																				(, = sin # (# 

Se procede a derivar N e integrar (, 

(N = (#																	, = 'sin # (# = −cos # 

'# sin # (# = N, −',(N = # ∙ (− cos #) −'−cos # (#

= −# cos # + sin # + * 

 

6.'# cos 4# (# 

Solución: 

Se definen los valores de N y (,: 

N = #																				(, = cos 4# (# 

Se procede a derivar N e integrar (, 

(N = (#																	, = 'cos 4# (# =
1
4
sin 4# 

'# cos 4# (# = N, −',(N = # ∙
1
4
sin 4# − '

1
4
sin 4# (#

=
1
4
# sin 4# −

1
4
∙ −

1
4
cos 4# + * =

1
4
# sin 4# +

1
16
cos 4# + * 

Existe otro método interesante en la técnica de integración por partes conocido 
como tabular. Este método se utiliza para integraciones por partes sucesivas, es 
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decir, integrar por partes varias veces consecutivas. Los tipos de integrales deben 
ser de los siguientes tipos: 

'ú(#) sin ù# (#,				' ú(#) cos ù# (# 				M				 ' ú(#)oF6(# 

Donde, ú(#) es un polinomio de grado 1 ≥ 1. Al tratarse de una integración por 
partes debemos escoger adecuadamente los valores de N y (,. Esto quiere decir 
que N deber derivada 1 veces hasta que su última derivada sea 0, mientras que las 
integraciones sucesivas se terminan justo aquí. Por ejemplo, los ejercicios 4, 5 y 6 
de esta sección también era válido aplicar el método de integración por partes 
tabular, pero, a partir del ejercicio 7 serán resueltos mediante este tipo de 
integraciones sucesivas, siempre que se cumpla con cualquiera de los tipos de 
integrales que contienen un polinomio y una expresión trigonométrica (seno y 
coseno) o expresión exponencial. 

 

7.'## sin 4# (# 

Solución:  

Se definen los valores de N = ## y (, = sin 4# para derivar e integrar de manera 
sucesiva hasta que la derivada de N sea 0, entonces: 

Signos N y sus  
derivadas 

(, y sus  
integrales 

+ ## sin 4# 

− 2# −
1
4
cos 4# 

+ 2 −
1
16
sin 4# 

− 0 
1
64
cos 4# 

Finalmente, se obtiene la solución: 

'## sin 4# (# = ## ?−
1
4
cos 4#A − 2# ?−

1
16
sin 4#A + 2?

1
64
cos 4#A + *

= −
1
4
## cos 4# +

1
8
# sin 4# +

1
32
cos 4# + * 
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8.'#& cos 3# (# 

Solución:  

Se definen los valores de N = #& y (, = cos 3# para derivar e integrar de manera 
sucesiva hasta que la derivada de N sea 0, entonces: 

Signos N y sus  
derivadas 

(, y sus  
integrales 

+ #& cos 3# 

− 3## 1
3
sin 3# 

+ 6# −
1
9
cos 3# 

− 6 −
1
27
sin 3# 

+ 0 1
81
cos 3# 

Finalmente, se obtiene la solución: 

'#& cos 3# (# = #& ?
sin 3#
3

A + 3## ?
cos 3#
9

A − 6# ?
sin 3#
27

A − 6?
cos 3#
81

A + *

=
1
3
#& sin 3# +

1
3
## cos 3# −

2
9
# sin 3# −

2
27
cos 3# + *

=
1
9
(3#& − 2#) sin 3# +

1
27
(9## − 2) cos 3# + * 

 

9.'#& sin # (# 

Solución:  

De manera similar a los ejercicios 7 y 8 se definen los valores de N = #& y (, = sin # 
para derivar e integrar de manera sucesiva hasta que la derivada de N sea 0, 
entonces: 
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Signos N y sus  
derivadas 

(, y sus  
integrales 

+ #& sin # 

− 3## −cos # 

+ 6# −sin # 

− 6 cos # 

+ 0 sin # 

 

Finalmente, se obtiene la solución: 

'#& sin # (# = #&(− cos #) + 3##(sin #) + 6#(cos #) − 6 sin # + *

= −#& cos # + 3## sin # + 6# cos # − 6 sin # + *

= (6# − #&) cos # + (3## − 6) sin 3# + * 

 

10.'#&o6(# 

Solución:  

Se definen los valores de N = #& y (, = o6 para derivar e integrar de manera 
sucesiva hasta que la derivada de N sea 0, entonces: 

Signos N y sus  
derivadas 

(, y sus  
integrales 

+ #& o6 

− 3## o6 

+ 6# o6 

− 6 o6 

+ 0 o6 

Finalmente, se obtiene la solución: 
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'#&o6(# = #&(o6) − 3##(o6) + 6#(o6) − 6(o6) + *

= #&o6 − 3##o6 + 6#o6 − 6o6 + *

= (#& − 3## + 6# − 6)o6 + * 

 

11.'
#o#6

(2# + 1)#
(# 

Solución: 

Se definen los valores de N y (,: 

N = #o#6																				(, =
(#

(2# + 1)#
 

Se procede a derivar N (derivada del producto de dos funciones) e integrar (, (se 
realiza cambio de variable õ = 2# + 1 y (# = "

#
(õ) 

(N = (2#o#6 + o#6)(#																	, = '
(#

(2# + 1)#
=
1
2
'õ*#(õ = −

1
2(2# + 1)

 

'
#o#6

(2# + 1)#
(# = N, −',(N = #o#6 ∙ m−

1
2(2# + 1)

n − '−
(2#o#6 + o#6)(#

2(2# + 1)

= −
#o#6

2(2# + 1)
+'

o#6(2# + 1)(#
2(2# + 1)

= −
#o#6

2(2# + 1)
+
1
2
'o#6(#

= −
#o#6

2(2# + 1)
+
1
2
∙
1
2
o#6 + * = −

#o#6

2(2# + 1)
+
1
4
o#6 + * 

 

12.'
#&o6

%

(## + 1)#
(# 

Solución: 

Antes de aplicar la integración por partes se debe realizar el proceso del cambio de 
variable: 

õ = ## 														⇒ 												(õ = 2#(#												 ⇒ 										#(# =
1
2
(õ 

'
#&o6

%

(## + 1)#
(# = '

##o6
%
#(#

(## + 1)#
= '

õoG F
1
2(õH

(õ + 1)#
=
1
2
'

õoG

(õ + 1)#
(õ 

Se utiliza la técnica de integración por partes, y se definen los valores de N y (,: 
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N = õoG																				(, =
(õ

(õ + 1)#
 

Se procede a derivar N (derivada del producto de dos funciones) e integrar (, (se 
realiza cambio de variable D = õ + 1 y (D = (õ) 

(N = (õoG + oG)(õ																	, = '
(õ

(õ + 1)#
= 'D*#(D = −

1
(õ + 1)

 

'
#&o6

%

(## + 1)#
(# =

1
2
'

õoG

(õ + 1)#
(õ =

1
2
mN, −',(Nn

=
1
2
âõoG m−

1
(õ + 1)

n − '−
(õoG + oG)(õ
(õ + 1)

ü

=
1
2
ç−

õoG

(õ + 1)
+ '

oG(õ + 1)(õ
(õ + 1)

é =
1
2
m−

õoG

(õ + 1)
+'oG(õn

=
1
2
m−

õoG

(õ + 1)
+ oG + *n =

1
2
ç
−õoG + oG(õ + 1)

õ + 1
é +

1
2
*

=
1
2
m
−õoG + õoG + oG

õ + 1
n + *" =

1
2

oG

õ + 1
+ *" =

1
2

o6
%

## + 1
+ * 

13.'#26(# 

Solución: 

Se definen los valores de N y (,: 

N = #																				(, = 26(# 

Se procede a derivar N e integrar (,:  

(N = (#															, = '26(# =
26

ln 2
 

'#26(# = N, −',(N = # ∙
26

ln 2
−'

26

ln 2
(# =

#26

ln 2
−

1
ln 2

'26(#

=
#26

ln 2
−

1
ln 2

∙
26

ln 2
+ * =

#26

ln 2
−

26

(ln 2)#
+ * 

 

14.'#'o6
%
(# 

Solución: 
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Se definen los valores de N y (,: 

N = #)																				(, = #o6
%
(# 

Se procede a derivar N e integrar (, (se realiza cambio de variable z= ## y 
derivando se obtiene #(# = "

#
(õ):  

(N = 4#&(#											, = 'oG ?
1
2
(õA =

1
2
'oG(õ =

1
2
oG =

1
2
o6

%  

'#'o6
%
(# = N, −',(N = #) ∙

1
2
o6

%
−'

1
2
o6

%
(4#&(#)

=
1
2
#)o6

%
−'2#&o6

%
(# =

1
2
#)o6

%
−'## ∙ 2#o6

%
(# 

Nuevamente (segunda integración por partes) se definen los valores de N y (,: 

N = ##																				(, = 2#o6
%
(# 

Se procede a derivar N e integrar (, (se repite lo realizado en la primera integración 
por partes, pero (õ = 2#(#):  

(N = 2#(#															, = 'oG(õ = oG = o6
%  

'#'o6
%
(# =

1
2
#)o6

%
−'## ∙ 2#o6

%
(# =

1
2
#)o6

%
− ?N, − ',(NA

=
1
2
#)o6

%
− ?##o6

%
−'o6

%
∙ 2#(#A

=
1
2
#)o6

%
− ##o6

%
+ o6

%
+ * 

 

15.' ln# # (# 

Solución: 

Se definen los valores de N y (,: 

N = (ln #)#																				(, = (# 

Se procede a derivar N e integrar (,:  

(N =
2 ln #
#

(#																		, = '(# = # 
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'ln# # (# = N, −',(N = # ∙ (ln #)# −'# ∙
2 ln #
#

(# = # ln# # − 2' ln # (# 

Nuevamente (segunda integración por partes) se definen los valores de N y (,: 

N = ln # 																				(, = (# 

Se procede a derivar N e integrar (,: 

(N =
1
#
(#																		, = '(# = # 

'ln# # (# = # ln# # − 2' ln # (# = # ln# # − 2?N, −',(NA

= # ln# # − 2?# ln # − '# ∙
1
#
(#A = # ln# # − 2# ln # + 2'(#

= # ln# # − 2# ln # + 2# + * 

 

16.'oH sin 4^ (^ 

Solución: 

Se definen los valores de N y (,: 

N = oH																							(, = sin 4^ (^ 

Se procede a derivar N e integrar (,:  

(N = oH(^																, = 'sin 4^ (^ = −
1
4
cos 4^ 

'oH sin 4^ (^ = N, −',(N = oH ∙ ?−
1
4
cos 4^A − '−

1
4
cos 4^ ∙ oH(^

= −
1
4
oH cos 4^ +

1
4
'oH cos 4^ (^ 

Nuevamente (segunda integración por partes) se definen los valores de N y (,: 

N = oH																					(, = cos 4^ (^ 

Se procede a derivar N e integrar (,: 

(N = oH(^																, = 'cos 4^ (^ =
1
4
sin 4^ 
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'oH sin 4^ (^ = −
1
4
oH cos 4^ +

1
4
'oH cos 4^ (^

= −
1
4
oH cos 4^ +

1
4
?N, −',(NA

= −
1
4
oH cos 4^ +

1
4
?oH ∙

1
4
sin 4^ − '

1
4
sin 4^ ∙ oH(^A

= −
1
4
oH cos 4^ +

1
16
oH sin 4^ −

1
16
'oH sin 4^ (# 

Como se puede observar, la última integral es semejante a la integral original, por 
lo tanto: 

?1 +
1
16
A'oH sin 4^ (^ = −

1
4
oH cos 4^ +

1
16
oH sin 4^ + * 

Finalmente, 

'oH sin 4^ (^ =
16
17
?−

1
4
oH cos 4^ +

1
16
oH sin 4^ + *A

= −
4
17
oH cos 4^ +

1
17
oH sin 4^ +

16
17
*

= −
4
17
oH cos 4^ +

1
17
oH sin 4^ + *" 

 

17.'sin(ln #) (# 

Solución: 

Se definen los valores de N y (,: 

N = sin(ln #) 																												(, = (# 

Se procede a derivar N e integrar (,:  

(N = cos(ln #) ∙
1
#
(#															, = '(# = # 

'sin(ln #)(# = N, −',(N = sin(ln #) ∙ # − '# ∙ cos(ln #) ∙
1
#
(#

= # sin(ln #) − 'cos(ln #) (# 

Nuevamente (segunda integración por partes) se definen los valores de N y (,: 
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N = cos(ln #) 																															(, = (# 

Se procede a derivar N e integrar (,:  

(N = −sin(ln #) ∙
1
#
(#													, = '(# = # 

'sin(ln #)(# = # sin(ln #) − ?N, −',(NA

= # sin(ln #) − çcos(ln #) ∙ # − '# Q−
sin(ln #)

#
R(#é

= # sin(ln #) − # cos(ln #) − 'sin(ln #) 

Observemos que la última integral es semejante a la integral original, por lo tanto: 

(1 + 1)' sin(ln #) (# = # sin(ln #) − # cos(ln #) + * 

Finalmente, 

'sin(ln #)(# =
1
2
[# sin(ln #) − # cos(ln #) + *]

=
1
2
# sin(ln #) −

1
2
# cos(ln #) +

1
2
*

=
1
2
#[sin(ln #) − cos(ln #)] + *" 

 

18.'sin # cos 2# (# 

Solución: 

Se definen los valores de N y (,: 

N = sin # 																					(, = cos 2# (# 

Se procede a derivar N e integrar (,:  

(N = cos # (#															, = ' cos 2# (# =
1
2
sin 2# 

'sin # cos 2# (# = N, − ',(N = sin # ∙
1
2
sin 2# −'

1
2
sin 2# ∙ cos # (#

=
1
2
sin # sin 2# −

1
2
'sin 2# cos # (# 
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Nuevamente (segunda integración por partes) se definen los valores de N y (,: 

N = cos # 																					(, = sin 2# (# 

Se procede a derivar N e integrar (,:  

(N = −sin # (#													, = 'sin 2# (# = −
1
2
cos 2# 

'sin # cos 2# (# =
1
2
sin # sin 2# −

1
2
?N, −',(NA

=
1
2
sin # sin 2# −

1
2
m−
1
2
cos # cos 2# − '

1
2
sin # cos 2# (#n

=
1
2
sin # sin 2# +

1
4
cos # cos 2# +

1
4
'sin # cos 2# (# 

Como se puede observar, la última integral es semejante a la integral original, por 
lo tanto: 

?1 −
1
4
A'sin # cos 2# (# =

1
2
sin # sin 2# +

1
4
cos # cos 2# + * 

Finalmente, 

'sin # cos 2# (# =
4
3
m
1
2
sin # sin 2# +

1
4
cos # cos 2# + *n

=
2
3
sin # sin 2# +

1
3
cos # cos 2# +

4
3
*

=
2
3
sin # sin 2# +

1
3
cos # cos 2# + *" 

 

19.' tan*" # (# 

Solución: 

Se definen los valores de N y (,: 

N = tan*" # 															(, = (# 

Se procede a derivar N e integrar (,:  

(N =
(#

## + 1
																, = '(# = # 

'tan*" # (# = N, − ',(N = # ∙ tan*" # −'#
(#

## + 1
= # tan*" # −'

#(#
## + 1
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En la última integral se aplica cambio de variable: 

D = ## + 1											 ⇒ 										(D = 2#(#											 ⇒ 										#(# =
1
2
(D 

'tan*" # (# = # tan*" # −'

1
2(D

D
= # tan*" # −

1
2
'
(D
D

= # tan*" # −
1
2
lnD + * = # tan*" # −

1
2
ln(## + 1) + * 

 

20.'o)H cos 2^ (^ 

Solución: 

Se definen los valores de N y (,: 

N = o)H																									(, = cos 2^ (^ 

Se procede a derivar N e integrar (,:  

(N = 4o)H(^																, = 'cos 2^ (^ =
1
2
sin 2^ 

'o)H cos 2^ (^ = N, −',(N = o)H ∙ ?
1
2
sin 2^A −'

1
2
sin 2^ ∙ 4o)H(^

=
1
2
o)H sin 2^ − 2'o)H sin 2^ (^ 

Nuevamente (segunda integración por partes) se definen los valores de N y (,: 

N = o)H																					(, = sin 2^ (^ 

Se procede a derivar N e integrar (,: 

(N = 4o)H(^																, = 'sin 2^ (^ = −
1
2
cos 2^ 

'o)H cos 2^ (^ =
1
2
o)H sin 2^ − 2?N, −',(NA

=
1
2
o)H sin 2^ − 2 ?−

1
2
o)H cos 2^ + 2'o)H cos 2^ (^A

=
1
2
o)H sin 2^ + o)H cos 2^ − 4'o)H cos 2^ (# 
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Como se puede observar, la última integral es semejante a la integral original, por 
lo tanto: 

(1 + 4)'o)H cos 2^ (^ =
1
2
o)H sin 2^ + o)H cos 2^ + * 

Finalmente, 

'oH sin 4^ (^ =
1
5
?
1
2
o)H sin 2^ + o)H cos 2^ + *A

=
1
10
o)H sin 2^ +

1
5
o)H cos 2^ +

1
5
*

=
1
10
o)H sin 2^ +

1
5
o)H cos 2^ + *" 

 

2.2. Integración de potencias de funciones trigonométricas. 

En esta sección se analizan y resuelven ejercicios de integración de potencias 
superiores de sin #, cos #, sec #, tan #, y de productos de potencias. A continuación, 
se describen los casos de integración de potencias de funciones trigonométricas. 

 

Caso 1: Integrales de potencias impares de seno y coseno  

(Ñ)' sin@ # (# 	†	(ÑÑ)' cos@ # (# ,	donde n es un número entero positivo impar	

(Ñ) Factor:  

sin@ # (# = (sin@*" #) sin # (# = (sin# #)
($*")
# sin # (#

= (1 − cos# #)
($*")
# sin # (# 

(ÑÑ) Factor:  

cos@ # (# = (cos@*" #) cos # (# = (cos# #)
($*")
# cos # (#

= (1 − sin# #)
($*")
# cos # (# 

Caso 2: Integrales de productos de potencias de seno y coseno  

'sin@ # cosK # (# ,	en	la	que	m	o	n es un número entero positivo impar	y	para	

la solución de este caso se debe aplicar el método explicado en el caso 1. 
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(Ñ) Si 1 es impar, entonces:  

sin@ # cosL # (# = (sin@*" #) cosL # sin # (#

= (sin# #)
($*")
# cosL # sin # (#

= (1 − cos# #)
($*")
# cosL # sin # (# 

(ÑÑ) Si • es impar, entonces:  

sin@ # cosL # (# = sin@ # (cosK*" #) cos # (#

= sin@ # (cos# #)
(L*")
# cos # (#

= sin@ # (1 − sin# #)
(L*")
# cos # (# 

 
Cuando las integrales de potencias de seno y coseno no son impares es imposible 
aplicar los casos 1 y 2, para lo cual se debe emplear las siguientes dos identidades 
trigonométricas: 

sin# # =
1
2
(1 − cos 2#) 

cos# # =
1
2
(1 + cos 2#) 

 

Caso 3: Integrales de potencias pares y productos de potencias de seno y coseno  

(Ñ)' sin@ # (# , (ÑÑ)' cos@ # (# 	†	(ÑÑÑ)' sin@ # cosK # (# 	donde m y n son  

números enteros positivos pares 

(Ñ) Factor:  

sin@ # (# = (sin# #)$/#(# = m
1
2
(1 − cos 2#)n

$
#
(# 

(ÑÑ) Factor:  

cos@ # (# = (cos# #)$/#(# = m
1
2
(1 + cos 2#)n

$
#
(# 

(ÑÑÑ) Factor:  

sin@ # cosK # (# = (sin# #)$/#(cos# #)L/#(#

= m
1
2
(1 − cos 2#)n

$
#
m
1
2
(1 + cos 2#)n

L
#
(# 
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Caso 4: Integrales de potencias de tangente y cotangente  

(Ñ)' tan@ # (# 	†	(ÑÑ)' cot@ # (# ,	donde n es un número entero positivo	

(Ñ) Factor:  

tan@ # (# = (tan@*# #) tan# # (# = (tan@*# #)(sec# # − 1)(# 

(ÑÑ) Factor:  

cot@ # (# = (cot@*# #) cot# # (# = (cot@*# #)(csc# # − 1)(# 
 

Caso 5: Integrales de potencias pares de secante y cosecante  

(Ñ)' sec@ # (# 	†	(ÑÑ)' csc@ # (# ,	donde n es un número entero positivo	par	

(Ñ) Factor:   

sec@ # (# = (sec@*# #) sec# # (# = (sec# #)
($*#)
# (sec# #)(#

= (tan# # + 1)
($*#)
# (sec# #)(# 

(ÑÑ) Factor:  

csc@ # (# = (csc@*# #) csc# # (# = (csc# #)
($*#)
# (csc# #)(#

= (cot# # + 1)
($*#)
# (csc# #)(# 

 

Caso 6: Integrales de productos de potencias pares de tangente, secante, 
cotangente y cosecante. 

(Ñ)' tan@ # secK # (# 	†	(ÑÑ)' cot@ # cscL # (# ,	donde n es un número entero  

positivo	par 

(Ñ) Factor:  

tan$ # secL # (# = tan@ # (secK*# #) sec# # (#

= tan@ # (sec# #)
(L*#)
# (sec# #)(#

= tan@ # (tan# # + 1)
(L*#)
# (sec# #)(# 
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(ÑÑ) Factor:  

cot$ # cscL # (# = cot@ # (cscK*# #) csc# # (# = cot@ # (csc# #)
(L*#)
# (csc# #)(#

= cot@ # (cot# # + 1)
(L*#)
# (csc# #)(# 

 

Caso 7: Integrales de productos de potencias impares de tangente, secante, 
cotangente y cosecante. 

(Ñ)' tan@ # secK # (# 	†	(ÑÑ)' cot@ # cscL # (# ,	donde n es un número entero  

positivo	impar 

(Ñ) Factor:  

tan$ # secL # (# = tan@*" # (secK*" #) sec # tan # (#

= (tan# #)
$*"
# 	(secK*" #) sec # tan # (#

= (sec# # − 1)
$*"
# (secK*" #) sec # tan # (# 

(ÑÑ) Factor:  

cot$ # cscL # (# = cot@*" # (cscK*" #) csc # cot # (#

= (cot# #)
$*"
# (cscK*" #) csc # cot # (#

= (csc# # − 1)
$*"
# (cscK*" #) csc # cot # (# 

 

Caso 8: Integrales de potencias pares de secante y cosecante  

(Ñ)' sec@ # (# 	†	(ÑÑ)' csc@ # (# ,	donde n es un número entero positivo	impar	

Aplicar la técnica de integración por partes: 

(Ñ) Considere N = sec@*# # y (, = sec# # (# 

(ÑÑ) Considere N = csc@*# # y (, = csc# # (# 

 
Caso 9: Integrales de productos de potencias pares e impares de tangente, secante, 
cotangente y cosecante. 
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(Ñ)' tan@ # secK # (# 	†	(ÑÑ)' cot@ # cscL # (# ,	donde n es un número entero  

positivo	par	y	m	es	un	número	entero	positivo	impar. Se debe expresar el 
integrando en potencias impares de secante o cosecante y después aplicar la técnica 
de integración por partes.  

(Ñ) Factor:  

tan$ # secL # (# = (tan# #)
$
# secK # (# = (sec# # − 1)

$
# secK # (# 

(ÑÑ) Factor:  

cot$ # cscL # (# = (cot# #)
$
# cscK # (# = (csc# # − 1)

$
# cscK # (# 

 

A continuación, se desarrollan ejercicios de integración de potencias de funciones 
trigonométricas en las que se utilizan los 8 casos descritos en esta sección.  

 

1.'sin& 4# (# 

Solución: 

Este problema se emplea el caso 1 de integral de potencia impar de seno 

'sin& 4# (# = 'sin# 4# sin 4# (# = '(1 − cos# 4#	) sin 4# (#

= 'sin 4# (# − 'cos# 4# sin 4# (#

= −
1
4
cos 4# −'(cos 4#)# sin 4# (# 

Se aplica el método del cambio de variable, donde: 

N = cos 4# 								⇒ 										(N = −4 sin 4# (#									 ⇒ 								 sin # (# = −
1
4
(N 

Por lo tanto, 

'sin& 4# (# = −
1
4
cos 4# − 'N# ?−

1
4
(NA = −

1
4
cos 4# +

1
4
'N#(N

= −
1
4
cos 4# +

1
4
∙
1
3
N& + * =

1
12
cos& 4# −

1
4
cos 4# + * 
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2.'cos' # (# 

Solución: 

Este problema se emplea el caso 1 de integral de potencia impar de coseno 

'cos' # (# = 'cos) # cos # (# = '(1 − sin# #	)# cos # (#

= '(1 − 2 sin# #	 + sin) #) cos # (#

= 'cos # (# − 2'sin# # cos # (# +'sin) # cos # (#

= sin # − 2'(sin #)# cos # (# +'(sin #)) cos # (# 

Se aplica el método del cambio de variable, donde: 

N = sin # 								⇒ 										(N = cos # (# 

Por lo tanto, 

'cos' # (# = sin # − 2'N#(N + 'N)(N = sin # − 2 ∙
1
3
N& +

1
5
N' + *

=
1
5
sin' # −

2
3
sin& # + sin # + * 

 

3.' cos& # (#
E

.
 

Solución: 

Este problema se procede a eliminar los valores absolutos, y se observa que se trata 
del caso 1 de integral de potencia impar de coseno 

' cos& # (#
E

.
= ' cos& # (#

E/#

.
+' −cos& # (#

E

E/#

= ' cos# # cos # (#
E/#

.
−' cos# # cos # (#

E

E/#

= ' (1 − sin# #) cos # (#
E/#

.
−' (1 − sin# #) cos # (#

E

E/#
 

Se aplica el método del cambio de variable, donde: 
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N = sin # 								⇒ 										(N = cos # (# 

Por lo tanto, 

' cos& # (#
E

.
= ' (1 − N#)(N

E/#

.
−' (1 − N#)(N

E

E
#

= ÄN −
1
3
N&Ä

.

E
#
− ÄN −

1
3
N&ÄE

#

E

= Äsin # −
1
3
sin& #Ä

.

E
#
− Äsin # −

1
3
sin& #ÄE

#

E

= m?sin
Å
2
−
1
3
sin&

Å
2
A − ?sin 0 −

1
3
sin& 0An

− m?sin Å −
1
3
sin& ÅA − ?sin

Å
2
−
1
3
sin&

Å
2
An

= m?1 −
1
3
A − 0n − m0 − ?1 −

1
3
An =

2
3
+
2
3
=
4
3

 

 

4.'sin& # cos& # (# 

Solución: 

Este problema se emplea el caso 2 de integral de productos de potencia de seno y 
coseno. Se puede usar cualquiera de los dos factores que se proponen, pero se va a 
utilizar el factor (ii). 

'sin& # cos& # (# = 'sin& # cos # cos# # (# = 'sin& # cos # (1 − sin# #	)(#

= 'sin& # cos # (# − 'sin' # cos # (# 

Se aplica el método del cambio de variable, donde: 

N = sin # 								⇒ 										(N = cos # (# 

Por lo tanto, 

'sin& # cos& # (# = 'N&(N − 'N'(N =
1
4
N) −

1
6
N( + *

=
1
4
sin) # −

1
6
sin( # + * 

 

5.'sin' 2# cos# 2# (# 
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Solución: 

Este problema se emplea el caso 2 de integral de productos de potencia de seno y 
coseno. Se puede usar cualquiera de los dos factores que se proponen, pero se va a 
utilizar el factor (i). 

'sin' 2# cos# 2# (# = 'sin 2# (sin# 2#)# cos# 2# (#

= 'sin 2# (1 − cos# 2#)# cos# 2# (#

= 'sin 2# (1 − 2 cos# 2# + cos) 2#) cos# 2# (#

= 'cos# 2# sin 2# (# − 2'cos) 2# sin 2# (#

+'cos( 2# sin 2# (# 

Se aplica el método del cambio de variable, donde: 

N = cos 2# 								⇒ 								(N = −2 sin 2# (#									 ⇒ 								 sin 2# (# = −
1
2
(N 

Por lo tanto, 

'sin' 2# cos# 2# (# = 'N# ?−
1
2
(NA − 2'N) ?−

1
2
(NA +'N( ?−

1
2
(NA

= −
1
2
'N#(N + 'N)(N −

1
2
'N((N

= −
1
2
∙
1
3
N& +

1
5
N' −

1
2
∙
1
7
N, + *

= −
1
6
cos& 2# +

1
5
cos' 2# −

1
14
cos, 2# + * 

 

}.' ¶ß®3 {e©e 

Solución: 

Este problema se emplea el caso 3 de integral de potencia de seno y coseno. Se 
emplea el factor (i). 

'sin) 3# (# = '(sin# 3#)#(# = 'm
1
2
(1 − cos 6#)n

#

(# = '
1
4
(1 − cos 6#)#(# 
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'sin) 3# (# =
1
4
'(1 − 2 cos 6# + cos# 6#)(#

=
1
4
'(# −

1
2
'cos 6# (# +

1
4
'cos# 6# (# 

En la última integral se aplica el caso 3 de integral de potencia de seno y coseno. Se 
emplea el factor (ii). Por lo tanto, 

'sin) 3# (# =
1
4
# −

1
2
∙
1
6
sin 6# +

1
4
'
1
2
(1 + cos 12#)(#

=
1
4
# −

1
12
sin 6# +

1
8
'(# +

1
8
'cos 12# (#

=
1
4
# −

1
12
sin 6# +

1
8
# +

1
8
∙
1
12
sin 12# + *

=
3
8
# −

1
12
sin 6# +

1
96
sin 12# + * 

 

z.' ™´¶2 d¨©¨ 

Solución: 

Este problema se emplea el caso 3 de integral de potencia de seno y coseno. Se 
emplea el factor (ii). 

'cos( 2^ (^ = '(cos# 2^)&(^ = ' m
1
2
(1 + cos 4^)n

&

(#

=
1
8
'(1 + 3 cos 4^ + 3 cos# 4^ + cos& 4^)(^

=
1
8
'(^ +

3
8
'cos 4^ (^ +

3
8
'cos# 4^ (^ +

1
8
'cos& 4^ (^ 

En la penúltima integral se aplica nuevamente el caso 3 con el factor (ii), y la última 
integral se utiliza el caso 1 con el factor (i). Por lo tanto, 

'cos( 2^ (^ =
1
8
^ +

3
8
sin 4^
4

+
3
8
'
1
2
(1 + cos 8^)(^ +

1
8
'cos# 4^ cos 4^ (^

=
1
8
^ +

3
32
sin 4^ +

3
16
'(^ +

3
16
'cos 8^ (^

+
1
8
'(1 − sin# 4^) cos 4^ (^ 
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'cos( 2^ (^ =
1
8
^ +

3
32
sin 4^ +

3
16
^ +

3
16

∙
1
8
sin 8^ +

1
8
'cos 4^ (^

−
1
8
'sin# 4^ cos 4^ (^

=
5
16
^ +

3
32
sin 4^ +

3
128

sin 8^ +
1
8
∙
1
4
sin 4^

−
1
8
'(sin 4^)# cos 4^ (^ 

Se aplica el método del cambio de variable, donde: 

N = sin 4^ 								⇒ 										(N = 4 cos 4^ (^									 ⇒ 								 cos 4^ (^ =
1
4
(N 

Por lo tanto, 

'cos( 2^ (^ =
5
16
^ +

3
32
sin 4^ +

3
128

sin 8^ +
1
32
sin 4^ −

1
8
'N# ?

1
4
(NA

=
5
16
^ +

3
32
sin 4^ +

3
128

sin 8^ +
1
32
sin 4^ −

1
32
'N#(N

=
5
16
^ +

4
32
sin 4^ +

3
128

sin 8^ −
1
32

∙
1
3
N& + *

=
5
16
^ +

1
8
sin 4^ +

3
128

sin 8^ −
1
96
sin& 4^ + * 

 

8.' tan) # (# 

Solución: 

Este problema se emplea el factor (i) del caso 4 de integral de potencia de tangente  

'tan) # (# = ' tan# # tan# # (# = 'tan# # (sec# #	 − 1)(#

= '(tan# # sec# # − tan# #)(#

= 'tan# # sec# # (# −' tan# # (#

= '(tan #)# sec# # (# −'(sec# # − 1)(# 

Se aplica el método del cambio de variable, donde: 
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N = tan # 								⇒ 										(N = sec# # (# 

Por lo tanto, 

'tan) # (# = 'N#(N −'sec# # (# +'(# =
1
3
N& − tan # + # + *

=
1
3
tan& # − tan # + # + * 

9.'cot) 3# (# 

Solución: 

Este problema se emplea el factor (ii) del caso 4 de integral de potencia de tangente 

'cot) 3# (# = 'cot# 3# cot# 3# (# = 'cot# 3# (csc# 3#	 − 1)(#

= '(cot# 3# csc# 3# − cot# 3#)(#

= 'cot# 3# csc# 3# (# −'cot# 3# (#

= '(cot 3#)# csc# 3# (# −'(csc# 3# − 1)(# 

A la primera integral se aplica el método del cambio de variable, donde: 

N = cot 3# 								⇒ 										(N = −3 csc# 3# (#									 ⇒ 										 csc# 3# (# = −
1
3
(N 

Por lo tanto, 

'cot) 3# (# = 'N# ?−
1
3
(NA − 'csc# 3# (# + '(#

= −
1
3
'N#(N +

1
3
cot 3# +'(# = −

1
9
N& +

1
3
cot 3# + # + *

= −
1
9
cot& 3# +

1
3
cot 3# + # + * 

 

10.' tan' 2# (# 

Solución: 

Este problema se emplea el factor (i) del caso 4 de integral de potencia de tangente  
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'tan' 2# (# = ' tan& 2# tan# 2# (# = 'tan& 2# (sec# 2#	 − 1)(#

= '(tan& 2# sec# 2# − tan& 2#)(#

= 'tan& 2# sec# 2# (# −' tan& 2# (#

= '(tan 2#)& sec# 2# (# −' tan2# (sec# 2# − 1)(# 

A la primera integral se aplica el método del cambio de variable, donde: 

N = tan2# 								⇒ 										(N = 2 sec# 2# (#								 ⇒ 									 sec# 2# (# =
1
2
(N 

Para la segunda integral se utiliza el proceso del ejercicio 7, por lo tanto, 

'tan' 2# (# = 'N& ?
1
2
(NA −'(tan 2# sec# 2# − tan2#)(#

=
1
2
'N&(N − 'tan2# sec# 2# (# + 'tan2# (#

=
1
2
∙
1
4
N) −'N ?

1
2
(NA +

1
2
ln(cos 2#) + *

=
1
8
tan) 2# −

1
2
'N(N +

1
2
ln(cos 2#) + *

=
1
8
tan) 2# −

1
2
∙
1
2
N# +

1
2
ln(cos 2#) + *

=
1
8
tan) 2# −

1
4
tan# 2# +

1
2
ln(cos 2#) + * 

 

11.' tan( 2# (# 

Solución: 

Este problema se emplea el factor (i) del caso 4 de integral de potencia de tangente  

'tan( 2# (# = ' tan) 2# tan# 2# (# = 'tan) 2# (sec# 2#	 − 1)(#

= '(tan) 2# sec# 2# − tan) 2#)(#

= 'tan) 2# sec# 2# (# −' tan) 2# (# 
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'tan( 2# (# = '(tan 2#)) sec# 2# (# −' tan# 2# (sec# 2# − 1)(# 

A la primera integral se aplica el método del cambio de variable, donde: 

N = tan2# 								⇒ 										(N = 2 sec# 2# (#								 ⇒ 									 sec# 2# (# =
1
2
(N 

Para la segunda integral se utiliza el proceso del ejercicio 7, por lo tanto, 

'tan( 2# (# = 'N) ?
1
2
(NA −'(tan# 2# sec# 2# − tan# 2#)(#

=
1
2
'N)(N − 'tan# 2# sec# 2# (# +' tan# 2# (#

1
2
∙
1
5
N'

−'(tan2#)# sec# 2# (# + '(sec# 2# − 1)(#

=
1
10
tan' 2# −'N# ?

1
2
(NA +'sec# 2# (# −'(#

=
1
10
tan' 2# −

1
2
'N#(N +

1
2
tan 2# − # + *

=
1
10
tan' 2# −

1
2
∙
1
3
N& +

1
2
tan2# − # + *

=
1
10
tan' 2# −

1
6
tan& 2# +

1
2
tan 2# − # + * 

 

12.'sec) # (# 

Solución: 

Este problema se emplea el factor (i) del caso 5 de integral de potencia par de 
secante  

'sec) # (# = 'sec# # sec# # (# = '(tan# # + 1) sec# # (#

= '(tan# # sec# # + sec# #)(#

= 'tan# # sec# # (# +'sec# # (#

= '(tan #)# sec# # (# + tan # + * 

Se aplica el método del cambio de variable, donde: 
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N = tan # 								⇒ 										(N = sec# # (# 

Por lo tanto, 

'sec) # (# = 'N#(N + tan # + * =
1
3
N& + tan # + * =

1
3
tan& # + tan # + * 

 

13.'csc) 3# (# 

Solución: 

Este problema se emplea el factor (ii) del caso 5 de integral de potencia de cosecante  

'csc) 3# (# = 'csc# 3# csc# 3# (# = '(cot# 3#	 + 1) csc# 3# (#

= '(cot# 3# csc# 3# + csc# 3#)(#

= 'cot# 3# csc# 3# (# +'csc# 3# (#

= '(cot 3#)# csc# 3# (# + ?−
1
3
cot 3#A + * 

A la integral se aplica el método del cambio de variable, donde: 

N = cot 3# 						⇒ 							(N = −3 csc# 3# (#						 ⇒ 						 csc# 3# (# = −
1
3
(N 

Por lo tanto, 

'csc) 3# (# = 'N# ?−
1
3
(NA −

1
3
cot 3# + * = −

1
3
'N#(N −

1
3
cot 3# + *

= −
1
3
∙
1
3
N& −

1
3
cot 3# + * = −

1
9
cot& 3# −

1
3
cot 3# + * 

 

14.' tan( # sec) # (# 

Solución: 

Este problema se emplea el factor (i) del caso 6 (m es un numero entero positivo 
par) de integral de productos de potencia de tangente y secante. Por lo tanto, 

'tan( # sec) # (# = ' tan( # (sec# #) sec# # (# 
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'tan( # sec) # (# = ' tan( # (tan# # + 1) sec# # (#

= '(tan/ # sec# # + tan( # sec# #)(#

= 'tan/ # sec# # (# +' tan( # sec# # (#

= '(tan #)/ sec# # (# +'(tan #)( sec# # (# 

Se aplica el método del cambio de variable, donde: 

N = tan # 								⇒ 								(N = sec# # (#			 

Por lo tanto, 

'tan( # sec) # (# = 'N/(N +'N((N =
1
9
N- +

1
7
N, + *

=
1
9
tan- # +

1
7
tan, # + * 

 

15.'cot# 3# csc) 3# (# 

Solución: 

Este problema se emplea el factor (ii) del caso 6 (m es un numero entero positivo 
par) de integral de productos de potencia de cotangente y cosecante. Por lo tanto, 

'cot# 3# csc) 3# (# = 'cot# 3# (csc# 3#) csc# 3# (#

= 'cot# 3# (cot# 3# + 1) csc# 3# (#

= '(cot) 3# csc# 3# + cot# 3# csc# 3#)(#

= 'cot) 3# csc# 3# (# +'cot# 3# csc# 3# (#

= '(cot 3#)) csc# 3# (# +'(cot 3#)# csc# 3# (# 

Se aplica el método del cambio de variable, donde: 

N = cot 3# 								⇒ 								(N = −3 csc# 3# (#								 ⇒ 						 csc# 3# (# = −
1
3
(N		 
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Por lo tanto, 

'cot# 3# csc) 3# (# = 'N) ?−
1
3
(NA +'N# ?−

1
3
(NA

= −
1
3
'N)(N −

1
3
'N#(N = −

1
3
∙
1
5
N' −

1
3
∙
1
3
N& + *

= −
1
15
cot' 3# −

1
9
cot& 3# + * 

 

16.' tan' # sec& # (# 

Solución: 

Este problema se emplea el factor (i) del caso 7 (en la que n es un numero entero 
positivo impar) de integral de productos de potencia de tangente y secante. Por lo 
tanto, 

'tan' # sec& # (# = '(tan# #)#(sec# #) sec # tan # (#

= '(sec# # − 1)# sec# # sec # tan # (#

= '(sec) # − 2 sec# # + 1) sec# # sec # tan # (#

= '(sec( # − 2 sec) # + sec# #) sec # tan # (#

= '(sec #)) sec # tan # (# − 2'(sec #)) sec # tan # (#

+'(sec #)# sec # tan # (# 

Se aplica el método del cambio de variable, donde: 

N = sec # 								⇒ 								(N = sec # tan # (#			 

Por lo tanto, 

'tan' # sec& # (# = 'N((N − 2'N)(N +'N#(N =
1
7
N, − 2 ∙

1
5
N' +

1
3
N& + *

=
1
7
sec, # −

2
5
sec' # +

1
3
sec& # + * 
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17.'cot, õ csc) õ (õ 

Solución: 

Este problema se emplea el factor (ii) del caso 7 de integral de productos de 
potencia de cotangente y cosecante. Por lo tanto, 

'cot, õ csc) õ (õ = '(cot# õ)&(csc& õ) csc õ cot õ (õ

= '(csc# õ − 1)& csc& õ csc õ cot õ (õ

= '(csc( õ − 3 csc) õ + 3 csc# õ − 1) csc& õ csc õ cot õ (õ

= '(csc- õ − 3 csc, õ + 3 csc' õ − csc& õ) csc õ cot õ (õ

= '(csc õ)- csc õ cot õ (õ − 3'(csc õ), csc õ cot õ (õ

+ 3'(csc õ)' csc õ cot õ (õ − '(csc õ)& csc õ cot õ (õ 

Se aplica el método del cambio de variable, donde: 

N = csc õ 					⇒ 						(N = −csc õ cot õ (õ							 ⇒ 		 csc õ cot õ (õ = −(N 

Por lo tanto, 

'cot, õ csc) õ (õ = 'N-(−(N) − 3'N,(−(N) + 3'N'(−(N) −'N&(−(N)

= −'N-(N + 3'N,(N − 3'N'(N + 'N&(N

= −
1
10
N". + 3 ∙

1
8
N/ − 3 ∙

1
6
N( +

1
4
N) + *

= −
1
10
csc". õ +

3
8
csc/ õ −

1
2
csc( õ +

1
4
csc) õ + * 

 

18.'sec& ^ (^ 

Solución: 

Este problema corresponde al caso 8 y utilizamos la integración por partes, para lo 
cual debemos considerar los valores de N = sec@*# ^ y (, = sec# ^ (^, es decir, 
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N = sec ^ 																																(, = sec# ^ (^ 

(N = sec ^ tan ^ (^															, = ' sec# ^ (^ = tan^ 

Por lo tanto, 

'sec& ^ (^ = 'sec ^ sec# ^ (^ = N, − ',(N

= sec ^ tan ^ − 'tan^ (sec ^ tan ^ (^)

= sec ^ tan ^ − 'tan# ^ sec ^ (^

= sec ^ tan ^ − '(sec# ^ − 1) sec ^ (^

= sec ^ tan ^ − 'sec& ^ (^ +'sec ^ (^ 

Se puede observar la semejanza de la integral de sec& ^, en consecuencia: 

'sec& ^ (^ +'sec& ^ (^ = sec ^ tan ^ + ln(sec ^ + tan^) + * 

Por lo tanto, 

'sec& ^ (^ =
1
2
[sec ^ tan ^ + ln(sec ^ + tan^) + *]

=
1
2
sec ^ tan ^ +

1
2
ln(sec ^ + tan^) + *" 

 

19.'csc' ^ (^ 

Solución: 

Este problema corresponde al caso 8 para potencias impares de cosecante y se debe 
emplear la técnica de integración por partes, para lo cual se debe considerar los 
valores de N = csc@*# ^ y (, = csc# ^ (^, es decir: 

N = csc& ^ 																																													(, = csc# ^ (^ 

(N = −3 csc# ^ csc ^ cot ^ (^												, = 'csc# ^ (^ 

(N = −3 csc& ^ cot ^ (^																						, = −cot ^ 
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Por lo tanto, 

'csc' ^ (^ = 'csc& ^ csc# ^ (^ = N, −',(N

= −csc& ^ cot ^ −'−cot ^ (−3 csc& ^ cot ^ (^)

= −csc& ^ cot ^ − 3'cot# ^ csc& ^ (^

= −csc& ^ cot ^ − 3'(csc# ^ − 1) csc& ^ (^

= −csc& ^ cot ^ − 3'csc' ^ (^ + 3'csc& ^ (^ 

Se puede observar la semejanza de la integral de csc' ^, en consecuencia: 

'csc' ^ (^ + 3'csc' ^ (^ = −csc& ^ cot ^ + 3'csc& ^ (^

= −
1
4
csc& ^ cot ^ +

3
4
'csc& ^ (^ 

Y en la integral de csc& ^ se vuelve aplicar el caso 8, para lo cual se debe considerar 
los valores de N = csc@*# ^ y (, = csc# ^ (^, es decir: 

N = csc ^ 																																		(, = csc# ^ (^ 

(N = −csc ^ cot ^ (^													, = 'csc# ^ (^ = −cot ^ 

Por lo tanto, 

'csc& ^ (^ = N, − ',(N = csc ^ (− cot ^) − '−cot ^ (− csc ^ cot ^)(^

= −csc ^ cot ^ − 'cot# ^ csc ^ (^

= −csc ^ cot ^ − '(csc# ^ − 1) csc ^ (^

= −csc ^ cot ^ − 'csc& ^ (^ +'csc ^ (^

= −csc ^ cot ^ + ln(csc ^ − cot ^) − 'csc& ^ (^ 

Podemos observar que nuevamente se tienen semejanzas de términos de la integral 
csc& ^, en consecuencia, 
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'csc& ^ (^ +'csc& ^ (^ = −csc ^ cot ^ + ln(csc ^ − cot ^) 

'csc& ^ (^ = −
1
2
csc ^ cot ^ +

1
2
ln(csc ^ − cot ^) 

Finalmente, 

'csc' ^ (^ = −
1
4
csc& ^ cot ^ +

3
4
'csc& ^ (^

= −
1
4
csc& ^ cot ^ +

3
4
m−
1
2
csc ^ cot ^ +

1
2
ln(csc ^ − cot ^)n

= −
1
4
csc& ^ cot ^ −

3
8
csc ^ cot ^ +

3
8
ln(csc ^ − cot ^) + * 

 

20.'sec' ^ (^ 

Solución: 

Este problema corresponde al caso 8 para potencias impares de secante y se debe 
emplear la técnica de integración por partes, para lo cual se debe considerar los 
valores de N = sec@*# ^ y (, = sec# ^ (^, es decir: 

N = sec& ^ 																																													(, = sec# ^ (^ 

Se procede a derivar N e integrar (,: 

(N = 3 sec# ^ sec ^ tan ^ (^															, = 'sec# ^ (^ 

(N = 3 sec& ^ tan^ (^																									, = tan^ 

Por lo tanto, 

'sec' ^ (^ = 'sec& ^ sec# ^ (^ = N, −',(N

= sec& ^ tan^ −'tan^ (3 sec& ^ tan^ (^)

= sec& ^ tan^ − 3' tan# ^ sec& ^ (^

= sec& ^ tan^ − 3'(sec# ^ − 1) sec& ^ (^

= sec& ^ tan^ − 3'sec' ^ (^ + 3'sec& ^ (^ 
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Se puede observar la semejanza de la integral de sec' ^, en consecuencia: 

'sec' ^ (^ + 3'sec' ^ (^ = sec& ^ tan^ + 3'sec& ^ (^ 

'sec' ^ (^ =
1
4
sec& ^ tan^ +

3
4
'sec& ^ (^ 

Y en la integral de sec& ^ se vuelve aplicar el caso 8, pero ya esa integral está resuelta 
en el ejercicio 18 de esta sección, por lo tanto, 

'sec' ^ (^ =
1
4
sec& ^ tan^ +

3
4
m
1
2
sec ^ tan ^ +

1
2
ln(sec ^ + tan^)n + *

=
1
4
sec& ^ tan^ +

3
8
sec ^ tan ^ +

3
8
ln(sec ^ + tan^) + * 

 

21.' tan# ^ sec& ^ (^ 

Solución: 

Este problema corresponde al factor (i) del caso 9 de productos de potencias 
tangente y secante cuando la primera y segunda potencias son par e impar, 
respectivamente. Después, se debe emplear la técnica de integración por partes. 

'tan# ^ sec& ^ (^ = '(sec# ^ − 1) sec& ^ (^ = 'sec' ^ (^ −'sec& ^ (^ 

Las integrales sec' ^ y sec& ^ fueron resueltas en los ejercicios 20 y 18,  

'tan# ^ sec& ^ (^

=
1
4
sec& ^ tan^ +

3
8
sec ^ tan ^ +

3
8
ln(sec ^ + tan^)

−
1
2
sec ^ tan ^ −

1
2
ln(sec ^ + tan^) + * 

'tan# ^ sec& ^ (^ =
1
4
sec& ^ tan^ −

1
8
sec ^ tan ^ −

1
8
ln(sec ^ + tan^) + * 

 

2.3. Integración por sustitución trigonométrica. 

En esta sección aprenderemos integrales (tanto indefinidas como definidas) que 
requieren un cambio de variable mediante sustituciones trigonométricas y como 
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pueden ser utilizadas en la simplificación de ciertas integrales. Existen tres formas 
de evaluar por sustitución trigonométrica, tales como: √-# − ,#, √-# + ,# y 
√,# − -# en la que - > 0. A continuación, se describen los tres casos: 

Caso 1: Integrales de expresiones que involucran √-# − ,#  

Se establece la sustitución trigonométrica a partir de las relaciones del seno y 
coseno, es decir: 

sin ^ =
,
-
									⇒ 								, = - sin ^ ;	−

Å
2
≤ ^ ≤

Å
2
		 

cos ^ =
√-# − ,#

-
						⇒ 				G-# − ,# = - cos ^	 

Además, que: 

^ = sin*" F
,
-
H 

 
Caso 2: Integrales de expresiones que involucran √-# + ,# 

Se establece la sustitución trigonométrica a partir de las relaciones de tangente y 
secante, es decir: 

tan ^ =
,
-
									⇒ 								, = - tan^ ;	−

Å
2
≤ ^ ≤

Å
2
		 

sec ^ =
√-# + ,#

-
						⇒ 				G-# + ,# = - sec ^	 

Además, que: 

^ = tan*" F
,
-
H 

 
Caso 3: Integrales de expresiones que involucran √,# − -# 

Se establece la sustitución trigonométrica a partir de las relaciones de secante y 
tangente, es decir: 

sec ^ =
,
-
									⇒ 								, = - sec ^ ;	−

Å
2
≤ ^ ≤

Å
2
		 

tan ^ =
√,# − -#

-
						⇒ 				G,# − -# = - tan^	 

Además, que: 
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^ = sec*" F
,
-
H 

 

A continuación, se desarrollan ejercicios de integración mediante el uso de los tres 
casos de integración por sustitución trigonométrica. 

1.'
(#

##√4 − ##
 

Solución: 

Este problema corresponde al caso 1 de sustitución trigonométrica. La figura 
muestra el triángulo rectángulo del caso 1, en la que se identifica , = # y - = 2. Por 
lo tanto,  

# = 2 sin θ 										⇒ 								(# = 2 cos ^ (^ 

y, 

G2# − ## = 2cos ^ 

Sustituyendo y simplificando, queda: 

'
(#

##√4 − ##
= '

2cos ^ (^
(2 sin ^)#(2 cos ^)

= '
(^

4 sin# ^
=
1
4
'csc# ^ (^

=
1
4
(− cot ^) + * = −

1
4
cot ^ + * 

Del triángulo mostrado por la figura se obtiene la siguiente relación trigonométrica: 

cot ^ =
√4 − ##

#
	 

Finalmente, 

'
(#

##√4 − ##
= −

1
4
√4 − ##

#
+ * 

 

2.'
√4 − ##(#

#
 

Solución: 

Este problema es idéntico al ejercicio anterior y corresponde al caso 1 de sustitución 
trigonométrica. Se identifica , = # y - = 2. Por lo tanto,  
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# = 2 sin θ 										⇒ 								(# = 2 cos ^ (^ 

Y, 

G2# − ## = 2cos ^ 

Sustituyendo y simplificando, queda: 

'
√4 − ##(#

#
= '

2cos ^ 2 cos ^ (^
2 sin ^

= 2'
cos# ^
sin ^

(^ = 2'
(1 − sin# ^)

sin ^
(^

= 2'Q
1

sin ^
−
sin# ^
sin ^

R(^ = 2'(csc ^ − sin ^)(^

= 2'csc ^ (^ − 2'sin ^ (^

= 2 ln(csc ^ − cot ^) + 2 cos ^ + * 

Del triángulo (ver figura) obtenemos las siguientes relaciones trigonométricas: 

csc ^ =
2
#
																																											 

cot ^ =
√4 − ##

#
	 

Finalmente, 

'
√4 − ##(#

#
= 2 lnQ

2
#
−
√4 − ##

#
R + 2 ∙

√4 − ##

2
+ *

= 2 lnQ
2 − √4 − ##

#
R + G4 − ## + * 

 

3.'G9 − ##(# 

Solución: 

Este problema corresponde al caso 1 de sustitución trigonométrica. En la figura se 
muestra el triángulo en la que se identifica , = # y - = 3. Por lo tanto,  

# = 3 sin θ 										⇒ 								(# = 3 cos ^ (^ 

y, 

G9 − ## = 3cos ^ 
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Sustituyendo y simplificando, queda: 

'G9 − ##(# = '3cos ^ ∙ 3 cos ^ (^ = 9'cos# ^ (^

= 9'
1
2
(1 + cos 2^)(^

=
9
2
'(^ +

9
2
'cos 2^ (^

=
9
2
^ +

9
2
∙
1
2
sin 2^ + *

=
9
2
^ +

9
4
sin 2^ + * 

Se utiliza la identidad trigonométrica sin 2^ = 2 sin ^ cos ^ y del triángulo 
mostrado por la figura obtenemos,  

sin ^ =
#
3
												⇒ 										^ = sin*"

#
3
								 

cos ^ =
√9 − ##

3
 

Finalmente, 

'G9 − ##(# =
9
2
^ +

9
4
∙ 2 sin ^ cos ^ + * =

9
2
^ +

9
2
sin ^ cos ^ + *

=
9
2
sin*"

#
3
+
9
2
∙
#
3
∙
√9 − ##

3
+ *

=
9
2
sin*" F

#
3
H +

#√9 − ##

2
+ * 

 

4.'(1 − ##)&/#	(# 

Solución: 

Este problema corresponde al caso 1 de sustitución trigonométrica. En la figura se 
muestra el triángulo en la que se identifica , = # y - = 1. Por 
lo tanto,  

# = sin θ 										⇒ 								(# = cos ^ (^ 

y, 
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G1 − ## = cos ^ 

Sustituyendo y simplificando, queda: 

'(1 − ##)&/#	(# = 'FG1 − ##H
&
(# = '(cos ^)& ∙ cos ^ (^ = 'cos) ^ (^ 

Para la integración de cos) ^ se utiliza el factor (ii) del caso 3 de integral de potencia 
par de coseno. 

'(1 − ##)&/#	(# = ' m
1
2
(1 + cos 2^)n

#

(# =
1
4
'(1 + 2 cos 2^ + cos# 2^)(^

=
1
4
'(^ +

1
4
'2 cos 2^ (^ +

1
4
'cos# 2^ (^

=
1
4
^ +

1
2
∙
1
2
sin 2^ +

1
4
'
1
2
(1 + cos 4^)(^

=
1
4
^ +

1
4
sin 2^ +

1
8
'(^ +

1
8
'cos 4^ (^

=
1
4
^ +

1
4
sin 2^ +

1
8
^ +

1
8
∙
1
4
sin 4^ + *

=
3
8
^ +

1
4
sin 2^ +

1
32
sin 4^ + * 

Se utilizan las identidades trigonométricas de ángulos dobles sin 4^ =
2 sin 2^ cos 2^, así como también, sin 2^ = 2 sin ^ cos ^ y cos 2^ = 1 − 2 sin# ^ y 
del triángulo mostrado por la figura se obtienen las siguientes relaciones 
trigonométricas: 

sin ^ = #												 ⇒ 										^ = sin*"(#)								 

cos ^ = G1 − ## 

Finalmente, 

'(1 − ##)&/#(# =
3
8
^ +

1
4
(2 sin ^ cos ^) +

1
32
(2 sin 2^ cos 2^) + *

=
3
8
sin*"(#) +

1
2
(#) FG1 − ##H

+
1
16
[(2 sin ^ cos ^)(1 − 2 sin# ^]

=
3
8
sin*"(#) +

#√1 − ##

2
+
#√1 − ##

8
[1 − 2(#)#] + * 
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'(1 − ##)&/#(# =
3
8
sin*"(#) +

#√1 − ##

2
+
#√1 − ##

8
−
2#&√1 − ##

8
+ *

=
3
8
sin*"(#) +

5#√1 − ##

8
−
#&√1 − ##

4
+ *

=
3
8
sin*"(#) +

#√1 − ##

8
(5 − 2##) + * 

 

5.'
#&(#

√5 − ##
 

Solución: 

Este problema corresponde al caso 1 de sustitución trigonométrica. En la figura se 
muestra el triángulo rectángulo que representa el caso 1, en la que se identifica , =
# y - = √5. Por lo tanto,  

# = √5 sin θ 										⇒ 								(# = √5 cos ^ (^ 

y, 

G5 − ## = √5 cos ^ 

Sustituyendo y simplificando, queda: 

'
#&(#

√5 − ##
= '

I√5 sin θJ
&
√5 cos ^ (^

√5 cos ^
= 5√5'sin& ^ (^ 

En la integración sin& ^ se emplea el caso 1 de integral de potencia impar de seno 
(véase la solución del ejercicio 1 de la sección 2.2), en consecuencia: 

'
#&(#

√5 − ##
= 5√5'sin# ^ sin ^ (# = 5√5'(1 − cos# ^	) sin ^ (^

= 5√5'sin ^ (^ − 5√5'cos# ^ sin ^ (^

= −5√5 cos ^ − 5√5'(cos ^)# sin ^ (^ 

Se aplica el método del cambio de variable, donde: 

N = cos ^ 								⇒ 										(N = −sin ^ (^ 

Por lo tanto, 
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'
#&(#

√5 − ##
= −5√5 cos ^ − 5√5'(cos ^)# sin ^ (^

= −5√5 cos ^ − 5√5'N#(−(N) = −5√5 cos ^ + 5√5'N#(N

= −5√5 cos ^ + 5√5 ∙
1
3
N& + * =

5√5
3
cos& ^ − 5√5 cos ^ + * 

Del triángulo mostrado por la figura se obtiene la siguiente relación trigonométrica: 

cos ^ =
√5 − ##

√5
 

Finalmente, 

'
#&(#

√5 − ##
=
5√5
3
Q
√5 − ##

√5
R

&

− 5√5Q
√5 − ##

√5
R + *

=
I√5 − ##J

&

3
− 5G5 − ## + * 

 

6.'
(#

#√4 + ##
 

Solución: 

Este problema corresponde al caso 2 de sustitución trigonométrica. En la figura se 
muestra el triángulo rectángulo que representa el caso 2, en la que se identifica , =
# y - = 2. Por lo tanto,  

# = 2 tan θ 										⇒ 								(# = 2 sec# ^ (^ 

y, 

G4 + ## = 2sec ^ 

Sustituyendo y simplificando, queda: 

'
(#

#√4 + ##
= '

2sec# ^ (^
(2 tan^)(2 sec ^)

=
1
2
'sec ^ ∙

1
tan ^

(^ =
1
2
'sec ^ ∙ cot ^ (^

=
1
2
'

1
cos ^

∙
cos ^
sin ^

(^ =
1
2
'

1
sin ^

(^ =
1
2
'csc ^ (^

=
1
2
ln(csc ^ − cot ^) + * 
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Del triángulo mostrado por la figura se obtienen las siguientes relaciones 
trigonométricas: 

sin ^ =
#

√4 + ##
													⇒ 							 csc ^ =

1
sin ^

=
√4 + ##

#
	 

tan ^ =
#
2
																										⇒ 							 cot ^ =

1
tan^

=
2
#
	 

Finalmente, 

'
(#

#√4 + ##
=
1
2
ln Q

√4 + ##

#
−
2
#
R + * =

1
2
lnQ

√4 + ## − 2
#

R + * 

 

7.'
##

√6 + ##
(# 

Solución: 

Este problema corresponde al caso 2 de sustitución trigonométrica. En la figura se 
muestra el triángulo que representa el caso 2, en la que se identifica , = # y - =
√6. Por lo tanto,  

# = √6 tan θ 										⇒ 								(# = √6 sec# ^ (^ 

y, 

G6 + ## = √6 sec ^ 

Sustituyendo y simplificando, queda: 

'
##

√6 + ##
(# = '

I√6 tan θJ
#

√6 sec ^
√6 sec# ^ (^ = 6'tan# ^ sec ^ (^ 

Aplicamos la identidad trigonométrica: tan# ^ = sec# ^ − 1, por lo que: 

'
##

√6 + ##
(# = 6'(sec# ^ − 1) sec ^ (^ = 6'sec& ^ (^ − 6'sec ^ (^

= 6'sec& ^ (^ − 6 ln(sec ^ + tan^) + * 

El desarrollo de ∫ sec& ^ (^ (véase el ejercicio 18 de la sección 2.2) corresponde al 
caso 8 para potencias impares de secante y usa la técnica de integración por partes, 
en la que se debe considerar que N = sec@*# ^ y (, = sec# ^ (^, es decir: 
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N = sec ^ 																															(, = sec# ^ (^ 

(N = sec ^ tan ^ (^															, = ' sec# ^ (^ = tan^ 

Por lo tanto, 

'sec& ^ (^ = 'sec ^ sec# ^ (^ = N, − ',(N

= sec ^ tan ^ − 'tan^ (sec ^ tan ^ (^)

= sec ^ tan ^ − 'tan# ^ sec ^ (^

= sec ^ tan ^ − '(sec# ^ − 1) sec ^ (^

= sec ^ tan ^ − 'sec& ^ (^ +'sec ^ (^ 

Se puede observar la semejanza de la integral de sec& ^, en consecuencia: 

'sec& ^ (^ +'sec& ^ (^ = sec ^ tan ^ + ln(sec ^ + tan^) 

'sec& ^ (^ =
1
2
sec ^ tan ^ +

1
2
ln(sec ^ + tan^) 

Reemplazamos este resultado en la integral: 

'
##

√6 + ##
(# = 6'sec& ^ (^ − 6 ln(sec ^ + tan^) + *

= 6 m
1
2
sec ^ tan ^ +

1
2
ln(sec ^ + tan^)n − 6 ln(sec ^ + tan^)

+ *

= 3 sec ^ tan ^ + 3 ln(sec ^ + tan^) − 6 ln(sec ^ + tan^) + *

= 3 sec ^ tan ^ − 3 ln(sec ^ + tan^) + * 

Del triángulo mostrado por la figura se obtiene la siguiente relación trigonométrica: 

cos ^ =
√6

√6 + ##
													⇒ 							 sec ^ =

1
cos ^

=
√6 + ##

√6
	 

tan ^ =
#

√6
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Finalmente, 

'
##

√6 + ##
(# = 3 ∙

√6 + ##

√6
∙
#

√6
− 3 ln Q

√6 + ##

√6
+
#

√6
R + *

=
1
2
#G6 + ## − 3 lnQ

√6 + ## + #

√6
R + *

=
1
2
#G6 + ## − 3 ln FG6 + ## + #H + *" 

 

8.'
(#

√13 − 4# + ##
 

Solución: 

Primero debemos convertir la integral a una forma donde la sustitución 
trigonométrica se puede aplicar, por lo tanto, aplicamos el método de completar 
cuadrados, 

## − 4# + 13 = ## − 2(2)# + 2# − 2# + 13 = (# − 2)# + 9 

Después la integral se resuelve aplicando el caso 2 de sustitución trigonométrica.  

'
(#

√13 − 4# + ##
= '

(#

G9 + (# − 2)#
 

En la figura se muestra el triángulo rectángulo que representa el caso 2, en la que 
se identifica , = # − 2 y - = 3. Por lo tanto,  

# − 2 = 3 tan θ 								⇒ 							# = 3 tan^ + 2					 ⇒ 							(# = 3 sec# ^ (^ 

y, 

G9 + (# − 2)# = 3sec ^ 

Sustituyendo y simplificando, queda: 

'
(#

√13 − 4# + ##
= '

(#

G9 + (# − 2)#
= '

3sec# ^ (^
3 sec ^

= 'sec ^ (^ = ln(sec ^ + tan^) + * 

Del triángulo mostrado por la figura se obtiene la siguiente relación trigonométrica: 

cos ^ =
3

G9 + (# − 2)#
													⇒ 							 sec ^ =

1
cos ^

=
G9 + (# − 2)#

3
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tan ^ =
# − 2
3

 

Finalmente, 

'
(#

√13 − 4# + ##
= ln(sec ^ + tan^) + * = ln Ø

G9 + (# − 2)#

3
+
# − 2
3

∞ + *

= lnØ
G9 + (# − 2)# + # − 2

3
∞ + *

= ln FG9 + (# − 2)# + # − 2H + *" 

 

9.'
o*6

9o*#6 + 1
(# 

Solución: 

Este ejercicio corresponde al caso 2 de sustitución trigonométrica. En la figura se 
muestra el triángulo que representa el caso 2, en la que se identifica , = 3o*6 y 
- = 1. Por lo tanto,  

3o*6 = tanθ 							⇒ 				−3o*6(# = sec# ^ (^					 ⇒ 				 o*6(# = −
1
3
sec# ^ (^ 

y, 

G9o*#6 + 1 = sec ^ 											⇒ 								9o*#6 + 1 = sec# ^ 

 
Sustituyendo y simplificando, queda: 

'
o*6

(9o*#6 + 1)
(# = '

−13 sec
# ^ (^

sec# ^
= −

1
3
'(^

= −
1
3
^ + * 

De la relación trigonométrica tan θ ya expresada se despeja θ, definida por: 

3o*6 = tanθ 							⇒ 				θ = tan*"(3o*6) 

Finalmente, 

'
o*6

(9o*#6 + 1)
(# = −

1
3
tan*"(3o*6) + * 
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10.'
o*6

(9o*#6 + 1)&/#
(# 

Solución: 

Este ejercicio se desarrolla de manera similar al ejercicio 9 que corresponde al caso 
2 de sustitución trigonométrica. En la figura se muestra el triángulo que representa 
el caso 2, en la que se identifica , = 3o*6 y - = 1. Por lo tanto,  

3o*6 = tanθ 							⇒ 				−3o*6(# = sec# ^ (^					 ⇒ 				 o*6(# = −
1
3
sec# ^ (^ 

y, 

G9o*#6 + 1 = sec ^ 							⇒ 					 (9o*#6 + 1)&/# = sec& ^ 

Sustituyendo y simplificando, queda: 

'
o*6

(9o*#6 + 1)&/#
(# = '

−13 sec
# ^ (^

sec& ^
= −

1
3
'

(^
sec ^

= −
1
3
'cos ^ (^ = −

1
3
sin ^ + * 

De la relación trigonométrica tan θ ya expresada despejamos θ, definida por: 

sin θ =
3o*6

√9o*#6 + 1
 

Finalmente, 

'
o*6

(9o*#6 + 1)&/#
(# = −

1
3

3o*6

√9o*#6 + 1
+ * = −

o*6

√9o*#6 + 1
+ * 

 

11.'
(M

MGM# − 7
 

Solución: 

Este problema corresponde al caso 3 de sustitución trigonométrica. En la figura se 
muestra el triángulo rectángulo que representa el caso 3, en la que se identifica , =
M y - = √7. Por lo tanto,  

M = √7 sec θ 										⇒ 								(M = √7 sec ^ tan ^ (^ 

y, 
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GM# − 7 = √7 tan^ 

Sustituyendo y simplificando, queda: 

'
(M

MGM# − 7
= '

√7 sec ^ tan ^ (^

I√7 sec θJI√7 tan^J
=

1

√7
'(^

=
1

√7
^ + * 

Del triángulo mostrado por la figura se obtiene la siguiente relación trigonométrica: 

tan ^ =
GM# − 7

√7
												⇒ 							^ = tan*" Ø

GM# − 7

√7
∞	 

Finalmente,  

'
(M

MGM# − 7
=

1

√7
tan*" Ø

GM# − 7

√7
∞ + * 

 

12.'
ln&D

D√ln#D − 4
(D 

Solución: 

Este problema corresponde al caso 3 de sustitución trigonométrica. En la figura se 
muestra el triángulo rectángulo que representa el caso 3, en la que se identifica , =
lnD y - = 2. Por lo tanto,  

lnD = 2 sec θ 										⇒ 							
1
D
(D = 2 sec ^ tan ^ (^ 

y, 

Gln#D − 4 = 2 tan^ 

Sustituyendo y simplificando, queda: 

'
ln&D

D√ln#D − 4
(D = '

(lnD)&

√ln#D − 4
∙
1
D
(D = '

(2 sec θ)&

2 tan^
2 sec ^ tan ^ (^

= '8sec& θ sec ^ (^ = 8'sec) θ 

El desarrollo de ∫ sec) ^ (^ (véase el ejercicio 12 de la sección 2.2) corresponde al 
factor (i) del caso 5 para integral de potencias pares de secante.  
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'sec) # (# = 'sec# # sec# # (# = '(tan# # + 1) sec# # (#

= 'tan# # sec# # (# +'sec# # (#

= '(tan #)# sec# # (# + tan # + * 

Se aplica el método del cambio de variable, donde: 

N = tan # 								⇒ 										(N = sec# # (# 

Por lo tanto, 

'sec) # (# = 'N#(N + tan # + * =
1
3
N& + tan # + * =

1
3
tan& # + tan # + * 

Reemplazamos este resultado en la integral: 

'
ln&D

D√ln#D − 4
(D = 8'sec) θ = 8 ?

1
3
tan& # + tan # + *A

=
8
3
tan& # + 8 tan # + 8*

=
8
3
tan& # + 8 tan # + *" 

Del triángulo rectángulo mostrado por la figura se obtiene la siguiente relación 
trigonométrica: 

tan ^ =
√ln#D − 4

2
 

Finalmente, 

'
ln&D

D√ln#D − 4
(D =

8
3
Q
√ln#D − 4

2
R

&

+ 8Q
√ln#D − 4

2
R + *"

=
1
3
FGln#D − 4H

&
+ 4Gln#D − 4 + *"

=
1
3
Gln#D − 4mFGln#D − 4H

#
+ 12n + *"

=
1
3
Gln#D − 4(ln#D − 4 + 12) + *"

=
1
3
Gln#D − 4(ln#D + 8) + *" 
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13.'
(#

√## − 6# + 8

/

)

 

Solución: 

Primero convertiremos la integral a una forma donde la sustitución trigonométrica 
se puede aplicar completando el cuadrado, es decir, que: 

## − 6# + 8 = ## − 2(3)# + 3# − 3# + 8 = (# − 3)# − 1 

Después la integral se resuelve aplicando el caso 2 de sustitución trigonométrica.  

'
(#

√## − 6# + 8

/

)

= '
(#

G(# − 3)# − 1

/

)

 

Este problema corresponde al caso 3 de sustitución trigonométrica. En la figura se 
muestra el triángulo que representa el caso 3, en la que se identifica , = # − 3 y 
- = 1. Por lo tanto,  

# − 3 = sec θ 										⇒ 						(# = sec ^ tan ^ (^ 

y, 

G(# − 3)# − 1 = tan^ 

Sustituyendo y simplificando, queda: 

'
(#

√## − 6# + 8

/

)

= '
(#

G(# − 3)# − 1

/

)

= '
sec ^ tan^ (^

tan^

/

)

= 'sec ^ (^

/

)

= |ln(sec ^ + tan^)|)
/ 

Las siguientes dos relaciones trigonométricas se obtienen del triángulo rectángulo 
que se mostró en la figura.: 

sec ^ = # − 3 

tan ^ = G(# − 3)# − 1 

Finalmente, se evalúa la integral definida: 

'
(#

√## − 6# + 8

/

)

= êln F# − 3 +G(# − 3)# − 1Hê
)

/
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'
(#

√## − 6# + 8

/

)

= tln F8 − 3 + G(8 − 3)# − 1Hu − tln F4 − 3 +G(4 − 3)# − 1Hu

= ln F5 +G(5)# − 1H − ln F1 + G(1)# − 1H

= lnI5 + √24J − ln(1)

= lnI5 + 2√6J 

 

14.'
o=

(o#= + 8o= + 7)&/#
(@

M@ #

.

 

Solución: 

Nuevamente en el denominador completamos cuadrados, 

o#= + 8o= + 7 = o#= + 2(4)o= + 4# − 4# + 7 = (o#= + 8o= + 16) − 9 

o#= + 8o= + 7 = (o= + 4)# − 9 

Después la integral se resuelve aplicando el caso 2 de sustitución trigonométrica.  

'
o=

(o#= + 8o= + 7)&/#
(@

M@ #

.

= '
o=

tG(o= + 4)# − 9u
& (@

M@ #

.

 

Este problema corresponde al caso 3 de sustitución trigonométrica. En la figura se 
muestra el triángulo rectángulo que representa el caso 3, en la que se identifica , =
o= + 4 y - = 3. Por lo tanto,  

o= + 4 = 3 sec θ 								⇒ 						 o=(@ = 3 sec ^ tan ^ (^ 

y,  

G(o= + 4)# − 9 = 3 tan^ 

Sustituyendo y simplificando, queda: 

'
o=

(o#= + 8o= + 7)&/#
(@

M@ #

.

= '
3sec ^ tan ^ (^
(3 tan ^)&

M@ #

.

=
1
9
'

sec ^ (^
tan# ^

M@ #

.

 

Aplicamos las identidades trigonométricas:  

sec ^ =
1

cos ^
															M																				 tan ^ =

sin ^
cos ^
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'
o=

(o#= + 8o= + 7)&/#
(@

M@ #

.

=
1
9
' sec ^ ∙

1
(tan ^)#

M@ #

.

=
1
9
'

1
cos ^

∙
cos# ^
sin# ^

(^

M@ #

.

=
1
9
'

cos ^
sin# ^

(^

M@ #

.

 

Ahora se realiza un cambio de variable, 

N = sin ^ 									⇒ 						(N = cos ^ (^ 

Sustituyendo el cambio de variable, 

'
o=

(o#= + 8o= + 7)&/#
(@

M@ #

.

=
1
9
'

(N
N#

M@ #

.

=
1
9
' N*#(N

M@ #

.

= −
1
9
Ä
1
N
Ä
.

M@ #

= −
1
9
Ä
1

sin ^
Ä
.

M@ #

 

Del triángulo mostrado por la figura se obtiene la siguiente relación trigonométrica: 

sin	 ^ =
G(o= + 4)# − 9

o= + 4
 

Finalmente, se evalúa la integral definida: 

'
o=

(o#= + 8o= + 7)&/#
(@

M@ #

.

= −
1
9
è

o= + 4

G(o= + 4)# − 9
è
.

M@ #

= −
1
9
âç

oM@ # + 4

G(oM@ # + 4)# − 9
é − ç

o. + 4

G(o. + 4)# − 9
éü

= −
1
9
âç

2 + 4

G(2 + 4)# − 9
é − ç

1 + 4

G(1 + 4)# − 9
éü

= −
1
9
Çm

6

√27
n − m

5

√16
ná =

1
9
Ç
5
4
−

6

3√3
á

=
5
36

−
6

27√3
≈ 0.010588 

 

2.4. Integración por fracciones parciales. 

El método de integración por fracciones parciales consiste en descomponer y luego 
poder realizar la operación de síntesis de una fracción racional !(#) = N(6)

O(6)
 que 

contiene términos complejos en el denominador ≤(#). Por medio de fracciones 
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parciales, es posible calcular y descomponer la expresión en términos más sencillos 
para poder fácilmente integrar o calcular la expresión así obtenida. Así pues, el 
principio básico de la integración por fracciones parciales consiste en factorizar el 
denominador y después descomponerlo en dos fracciones diferentes donde los 
denominadores son los factores respectivamente y el numerador se calcula 
convenientemente. Los pasos necesarios para descomponer una fracción algebraica 
en sus fracciones parciales resultan de la consideración del proceso inverso: la suma 
(o la resta). Considere la siguiente suma de fracciones algebraicas: 

1
# − 2

+
3

# − 3
=
(# − 3) + 3(# − 2)
(# − 2)(# − 3)

=
4# − 9

(# − 2)(# − 3)
 

El propósito de esta sección es realizar lo inverso, es decir, que a partir de, 

4# − 9
(# − 2)(# − 3)

 

tratar de encontrar las fracciones cuya suma da este resultado, luego las dos 
fracciones obtenidas, es decir, 

1
# − 2

			M			
3

# − 3
 

denominadas “fracciones parciales” de 

4# − 9
(# − 2)(# − 3)

 

Las fracciones son descompuestas en fracciones parciales debido a que: 

Ø hace que determinadas integrales resulten mucho más fáciles de resolver, y 
Ø también se utiliza en la transformada de Laplace, que se estudiará en 

ecuaciones diferenciales. 

Entonces, por ejemplo, si necesitáramos integrar la denominada “fracción parcial”, 
se podría simplificar la integral de la siguiente manera: 

'
4# − 9

(# − 2)(# − 3)
(# = '

1
# − 2

(# + '
3

# − 3
(# 

Para evaluar las dos integrales se recomienda revisar el ejercicio 7 de la sección 1.3 
del capítulo 1. 

'
4# − 9

(# − 2)(# − 3)
(# = ln(# − 2) + 3 ln(# − 3) + *

= ln(# − 2) + ln(# − 3)& + * = ln[(# − 2)(# − 3)&] + * 
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El proceso: 

1. Si el grado de P(x) es mayor o igual que el grado de Q(x), entonces tenemos que 
utilizar la división larga para encontrar 

V(#)
≤(#)

= ≥(#) +
¥(#)
≤(#)

 

lo que resulta en que el grado del resto ¥(#) es menor que el grado de ≤(#). 

2. Para descomponer N(6)
O(6)

 o P(6)
O(6)

 (en caso de haber hecho la división larga), primero 
factorizamos ≤(#). 
 

3. A continuación, se debe usar las distintas formas de integración por fracciones 
parciales y los distintos métodos. 
Ø Caso 1: Fracciones algebraicas con dos factores lineales: Por cada factor 

lineal no repetido (# ± -) y (# ± x) en ≤(#), se define la fracción parcial 
como: 

µ
# ± -

+
∂

# ± x
 

Ø Caso 2: Fracciones algebraicas con factor lineal repetido: Por cada factor 
lineal repetido (# ± -)$ y (# ± x) en ≤(#), se define la fracción parcial 
como: 

µ
(# ± -)

+
∂

(# ± -)#
+⋯+

∏
(# ± -)$

+
π

# ± x
 

Ø Caso 3: Fracciones algebraicas con factor cuadrático: Por cada factor 
cuadrático ## + x# + ∫, se define la fracción parcial como: 

µ# + ∂
## + x# + ∫

 

Ø Caso 4: Fracciones algebraicas con factores cuadráticos repetidos: Por 
cada factor cuadrático repetido (## + x# + ∫)$, se define la fracción 
parcial como: 

µ# + ∂
(## + x# + ∫)

+
*# + ö

(## + x# + ∫)#
+⋯+

∏# + π
(## + x# + ∫)$

 

Finalmente, se integran los términos resultantes.  Los factores lineales dan 
logaritmos.  La sustitución o la sustitución trigonométrica normalmente se 
encargarán de los otros factores. A continuación, se presentan ejercicios resueltos 
de los cuatro casos de la integración por fracciones parciales. 
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1.'
1

#(# − 2)
(# 

Solución: 

Primero evaluamos la fracción parcial mediante tres métodos del caso de factores 
lineales, 

1
#(# − 2)

=
µ
#
+

∂
# − 2

 

Método 1: combinando los términos de los miembros del lado derecho de la 
ecuación, se obtiene: 

1
#(# − 2)

=
µ(# − 2) + ∂#
#(# − 2)

 

Ya que los denominadores son iguales se simplifican, por lo tanto: 

1 = µ(# − 2) + ∂# 

1 = µ# − 2µ + ∂# 

0# + 1 = #(µ + ∂) − 2µ 

Igualamos los coeficientes de potencias iguales: 

1 = −2µ									 ⇒ 												µ = −
1
2

 

0 = µ + ∂						 ⇒ 												∂ =
1
2

 

Método 2: nuevamente combinamos los términos de los miembros del lado 
derecho de la ecuación, se obtiene: 

1
#(# − 2)

=
µ(# − 2) + ∂#
#(# − 2)

 

Ya que los denominadores son iguales se simplifican, por lo tanto: 

1 = µ(# − 2) + ∂# 

Mediante asignación de valores de # se obtienen µ y ∂, es decir, 

Si # = 0:  1 = µ(−2) + ∂(0) 											⇒ 												µ = − "
#
 

Si # = 2:  1 = µ(0) + ∂(2) 														⇒ 									∂ = "
#
 

Método 3: conocido como método de encubrimiento  
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1
#(# − 2)

=
µ
#
+

∂
# − 2

 

Para encontrar µ y ∂ se aplica: 

µ =
1

# − 2
Ä
6Q.

=
1

0 − 2
											⇒ 												µ = −

1
2

 

∂ =
1
#
Ä
6Q#

=
1
2
																											⇒ 												∂ =

1
2

 

Como se puede observar, el desarrollo de la fracción parcial mediante los tres 
métodos explicados da siempre el mismo resultado. En el resto de los ejercicios de 
esta sección se va a utilizar cualquier método y se recomienda al lector resolver los 
ejercicios con cualesquiera de los métodos no empleados en la resolución de los 
ejercicios. 

Por lo tanto, la descomposición en fracciones parciales deseada es, 

1
#(# − 2)

=
−1/2
#

+
1/2
# − 2

 

En consecuencia, 

'
1

#(# − 2)
(# = '

−1/2
#

(# +'
1/2
# − 2

(# = −
1
2
'
(#
#
+
1
2
'

(#
# − 2

= −
1
2
ln # +

1
2
ln(# − 2) + * 

Finalmente, aplicando propiedad de logaritmo natural: ln F:
7
H = ln - − ln x 

'
1

#(# − 2)
(# =

1
2
[ln(# − 2) − ln #] + * =

1
2
ln ?

# − 2
#

A + * 

 

2.'
5# − 1
## − 1

(# 

Solución: 

Método 2: Primero factorizamos el denominador y combinamos los términos de los 
miembros del lado derecho de la ecuación, se obtiene: 

5# − 1
## − 1

=
5# − 1

(# − 1)(# + 1)
=

µ
# − 1

+
∂

# + 1
=
µ(# + 1) + ∂(# − 1)
(# − 1)(# + 1)

 

Ya que los denominadores son iguales se simplifican, por lo tanto: 
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5# − 1 = µ(# + 1) + ∂(# − 1) 

Mediante asignación de valores de # se obtienen µ y ∂, es decir, 

Si # = 1:  5(1) − 1 = µ(2) + ∂(0) 																⇒ 												µ = 2 

Si # = −1:  5(−1) − 1 = µ(0) + ∂(−2) 						⇒ 											∂ = 3 

Por lo tanto, la descomposición en fracciones parciales deseada es, 

5# − 1
## − 1

=
2

# − 1
+

3
# + 1

 

En consecuencia, 

'
5# − 1
## − 1

(# = '
2

# − 1
(# +'

3
# + 1

(# = 2'
(#
# − 1

+ 3'
(#
# + 1

= 2 ln(# − 1) + 3 ln(# + 1) + *

= ln(# − 1)# + ln(# + 1)& + * = ln[(# − 1)#(# + 1)&] + * 

 

3.'
# + 2
2## − #

(# 

Solución: 

Método 2: Primero factorizamos el denominador y combinamos los términos de los 
miembros del lado derecho de la ecuación, se obtiene: 

# + 2
2## − #

=
# + 2

#(2# − 1)
=
µ
#
+

∂
2# − 1

=
µ(2# − 1) + ∂#
#(2# − 1)

 

Ya que los denominadores son iguales se simplifican, por lo tanto: 

# + 2 = µ(2# − 1) + ∂# 

Mediante asignación de valores de # se obtienen µ y ∂, es decir, 

Si	# = 0:  0 + 2 = µ(−1) + ∂(0) 					⇒ 									µ = −2 

Si	# =
1
2
:		
1
2
+ 2 = µ(0) + ∂ ?

1
2
A 									⇒ 								∂ = 5 

Por lo tanto, la descomposición en fracciones parciales deseada es, 

# + 2
2## − #

=
−2
#
+

5
2# − 1

 

En consecuencia, 
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'
# + 2
2## − #

(# = '
−2
#
(# + '

5
2# − 1

(#

= −2'
(#
#
+ 5'

(#
2# − 1

= −2 ln # + 5 ∙
1
2
ln(2# − 1) + *

= −2 ln # +
5
2
ln(2# − 1) + * 

 

4.'
4# − 11

2## + 7# − 4
(# 

Solución: 

Método 2: Primero factorizamos el denominador y combinamos los términos de los 
miembros del lado derecho de la ecuación, se obtiene: 

4# − 11
2## + 7# − 4

=
4# − 11

(2# − 1)(# + 4)
=

µ
2# − 1

+
∂

# + 4
=
µ(# + 4) + ∂(2# − 1)
(2# − 1)(# + 4)

 

Ya que los denominadores son iguales se simplifican, por lo tanto: 

4# − 11 = µ(# + 4) + ∂(2# − 1) 

Mediante asignación de valores de # se obtienen µ y ∂, es decir, 

Si # = "
#
:  2 − 11 = µ F

"
#
+ 4H + ∂(0) 					⇒ 									µ = −2 

Si # = −4:  4(−4) − 11 = µ(0) + ∂(7) 									⇒ 								∂ = 5 

Por lo tanto, la descomposición en fracciones parciales deseada es, 

# + 2
2## − #

=
−2
#
+

5
2# − 1

 

En consecuencia, 

'
# + 2
2## − #

(# = '
−2
#
(# + '

5
2# − 1

(#

= −2'
(#
#
+ 5'

(#
2# − 1

= −2 ln # + 5 ∙
1
2
ln(2# − 1) + *

= −2 ln # +
5
2
ln(2# − 1) + * 

 

5.'
1

(# + 2)#(# + 1)
(# 
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Solución: 

Método 2: Este caso corresponde a factores lineales repetidos, después 
combinamos los términos de los miembros del lado derecho de la ecuación, se 
obtiene: 

1
(# + 2)#(# + 1)

=
µ

# + 2
+

∂
(# + 2)#

+
*

# + 1
 

1
(# + 2)#(# + 1)

=
µ(# + 2)(# + 1) + ∂(# + 1) + *(# + 2)#

(# + 2)#(# + 1)
 

Ya que los denominadores son iguales se simplifican, por lo tanto: 

1 = µ(# + 2)(# + 1) + ∂(# + 1) + *(# + 2)# 

Mediante asignación de valores de # se obtienen µ, ∂ y *, es decir, 

Si # = −2: 1 = µ(0) + ∂(−1) + *(0)# 											⇒ 									∂ = −1 

Si # = −1: 1 = µ(0) + ∂(0) + *(1)# 															⇒ 								* = 1 

Si # = 0: 1 = µ(2)(1) + (−1)(1) + (1)(2)# 		⇒ 							µ = −1 

Por lo tanto, la descomposición en fracciones parciales deseada es, 

1
(# + 2)#(# + 1)

=
−1
# + 2

+
−1

(# + 2)#
+

1
# + 1

 

En consecuencia, 

'
1

(# + 2)#(# + 1)
(# = '

−1
# + 2

(# +'
−1

(# + 2)#
(# +'

1
# + 1

(#

= −'
(#
# + 2

−'
(#

(# + 2)#
+'

(#
# + 1

= − ln(# + 2) −
(# + 2)*"

−1
+ ln(# + 1) + *

= − ln(# + 2) +
1

# + 2
+ ln(# + 1) + * 

 

6.'
2# − 1
(# + 1)&

(# 

Solución: 
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Método 2: Este caso corresponde a factores lineales repetidos, después 
combinamos los términos de los miembros del lado derecho de la ecuación, se 
obtiene: 

2# − 1
(# + 1)&

=
µ

# + 1
+

∂
(# + 1)#

+
*

(# + 1)&
 

2# − 1
(# + 1)&

=
µ(# + 1)# + ∂(# + 1) + *

(# + 1)&
 

Ya que los denominadores son iguales se simplifican, por lo tanto: 

2# − 1 = µ(# + 1)# + ∂(# + 1) + * 

Mediante asignación de valores de # se obtienen µ, ∂ y *, es decir, 

Si # = −1: −3 = µ(0)# + ∂(0) + *												 ⇒ 									* = −3 

Si # = 0: −1 = µ(1)# + ∂(1) + (−3) 									⇒ 						µ + ∂ = 2						(1) 

Si # = 1: 1 = µ(2)# + ∂(2) + (−3) 												⇒ 					2µ + ∂ = 2					(2) 

Restamos la ecuación (2) de (1): 

		2µ + ∂ = 2					 

−µ − ∂ = −2					 

			µ					//	= 	0																	 ⇒ 												µ = 0 

De (1): ∂ = 2 − µ									 ⇒ 										∂ = 2 

Por lo tanto, la descomposición en fracciones parciales deseada es, 

2# − 1
(# + 1)&

=
0

# + 1
+

2
(# + 1)#

+
−3

(# + 1)&
 

En consecuencia, 

'
2# − 1
(# + 1)&

(# = '
2

(# + 1)#
(# + '

−3
(# + 1)&

(# = 2'
(#

(# + 1)#
− 3'

(#
(# + 1)&

= 2 ∙
(# + 1)*"

−1
− 3 ∙

(# + 1)*#

−2
+ * = −

2
# + 1

+
3

2(# + 1)#
+ * 

 

7.'
1

(## + 6# + 5)#
(# 

Solución: 
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Método 3: Este caso corresponde a factores lineales repetidos usando el método 
del encubrimiento, primero factorizamos el denominaros y después combinamos 
los términos de los miembros del lado derecho de la ecuación, se obtiene: 

1
(## + 6# + 5)#

=
1

[(# + 1)(# + 5)]#
=

1
(# + 1)#(# + 5)#

 

1
(# + 1)#(# + 5)#

=
µ

# + 1
+

∂
(# + 1)#

+
*

# + 5
+

ö
(# + 5)#

 

Aplicando el método del encubrimiento para los factores lineales de potencia 
mayor: 

∂ =
1

(# + 5)#
Ä
6Q*"

=
1

(−1 + 5)#
										⇒ 								∂ =

1
16

 

ö =
1

(# + 1)#
Ä
6Q*'

=
1

(−5 + 1)#
										⇒ 								ö =

1
16

 

Para obtener A y C del método de encubrimiento derivamos las expresiones de A y 
B: 

µ =
(
(#
m

1
(# + 5)#

n	Ä
6Q*"

=
−2

(# + 5)&
Ä
6Q*"

=
−2

(−1 + 5)&
Ä
6Q*"

		⇒ 					µ = −
1
32

 

* =
(
(#
m

1
(# + 1)#

n	Ä
6Q*'

=
−2

(# + 1)&
Ä
6Q*'

=
−2

(−5 + 1)&
Ä
6Q*'

		⇒ 					* =
1
32

 

Por lo tanto, la descomposición en fracciones parciales deseada es, 

1
(## + 6# + 5)#

=
−1/32
# + 1

+
1/16

(# + 1)#
+
1/32
# + 5

+
1/16

(# + 5)#
	

En	consecuencia,	

'
1

(## + 6# + 5)#
(# = '

1
(# + 1)#(# + 5)#

(#

= '
− 1
32(#

# + 1
+ '

1
16(#

(# + 1)#
+'

1
32(#

# + 5
+'

1
16(#

(# + 5)#

= −
1
32
ln|# + 1| −

(# + 1)*"

16
+
1
32
ln|# + 5| −

(# + 5)*"

16
+ *

=
1
32
ln Ä
# + 5
# + 1

Ä −
1

16(# + 1)
−

1
16(# + 5)

+ * 
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8.'
1

(## − # − 6)(## − 2# − 8)
(# 

Solución: 

Método 3: Este caso corresponde a factores lineales repetidos usando el método 
del encubrimiento, primero factorizamos el denominaros y después combinamos 
los términos de los miembros del lado derecho de la ecuación, se obtiene: 

1
(## − # − 6)(## − 2# − 8)

=
1

(# − 3)(# + 2)(# − 4)(# + 2)
 

1
(## − # − 6)(## − 2# − 8)

=
1

(# − 4)(# − 3)(# + 2)#
 

1
(## − # − 6)(## − 2# − 8)

=
µ

# − 4
+

∂
# − 3

+
*

# + 2
+

ö
(# + 2)#

 

Aplicando el método del encubrimiento para los factores lineales de potencia 

mayor: 

µ =
1

(# − 3)(# + 2)#
Ä
6Q)

=
1

(1)(36)
										⇒ 								µ =

1
36

 

∂ =
1

(# − 4)(# + 2)#
Ä
6Q&

=
1

(−1)(25)
							⇒ 							∂ = −

1
25

 

ö =
1

(# − 4)(# − 3)
Ä
6Q*#

=
1

(−6)(−5)
						⇒ 							ö =

1
30

 

Se aplica la derivación de D para obtener C del método de encubrimiento: 

* =
(
(#
m

1
(# − 4)(# − 3)

n	Ä
6Q*#

=
−2# + 7

(# − 4)#(# − 3)#
Ä
6Q*#

=
11

(−6)#(−5)#
Ä
6Q*#

 

* =
11
900

 

Por	lo	tanto,	la	descomposición	en	fracciones	parciales	deseada	es,	

1
(# − 4)(# − 3)(# + 2)#

=
1/36
# − 4

+
−1/25
# − 3

+
11/900
# + 2

+
1/30

(# + 2)#
	

En	consecuencia,	

'
1

(## − # − 6)(## − 2# − 8)
(# = '

1
(# − 4)(# − 3)(# + 2)#

(#	
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'
1

(## − # − 6)(## − 2# − 8)
(#

= '

1
36(#

# − 4
+ '

−
1
25(#

# − 3
+ '

11
900(#

# + 2
+'

1
30(#

(# + 2)#

=
1
36
ln|# − 4| −

1
25
ln|# − 3| +

11
900

ln|# + 2| −
1

30(# + 2)
+ *	

 

9.'
(,

,#(, − 1)#
 

Solución: 

Este caso corresponde a factores lineales repetidos y se emplean los métodos 2 y 3 
para que el lector compare y decida el mejor método en la solución de problemas 
de integración por fracciones parciales. Primero se descompone la fracción 
algebraica de la integral en fracciones parciales,  

1
,#(, − 1)#

=
µ
,
+
∂
,#
+

*
, − 1

+
ö

(, − 1)#
 

Método 2: combinando los términos de los miembros del lado derecho de la 
ecuación, se obtiene, 

1
,#(, − 1)#

=
µ,(, − 1)# + ∂(, − 1)# + *,#(, − 1) + ö,#

,#(, − 1)#
 

Ya que los denominadores son iguales se simplifican, por lo tanto: 

1 = µ,(, − 1)# + ∂(, − 1)# + *,#(, − 1) + ö,# 

Mediante asignación de valores de , se obtienen µ, ∂, * y ö, es decir, 

Si # = 0: 1 = µ(0) + ∂(−1)# + *(0) + ö(0) 							⇒ 							∂ = 1 

Si # = 1: 1 = µ(0) + ∂(0) + C(0) + D(1)# 											⇒ 							D = 1 

Si # = −1: 1 = µ(−1)(−2)# + ∂(−2)# + C(−1)#(−2) + D(−1)# 

					1 = −4A + (1)(4) − 2C + (1)(1) 				⇒ 				2µ + * = 2								(1) 

Si # = 2: 1 = µ(2)(1)# + ∂(1)# + C(2)#(1) + D(2)# 

	1 = 2A + (1)(1) + 4C + (1)(4) 											⇒ 			−2µ − 4* = 4				(2) 

Sumamos las ecuaciones (1) de (2): 
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			2µ + * = 2					 

−2µ − 4C = 4					 

			//			−3C = 6													 ⇒ 										* = −2 

De (1): µ = 1 − 0.5C = 1 − 0.5(−2) 							⇒ 						µ = 2 

Método 3: Para obtener las constantes ∂ y ö se aplica el método del encubrimiento 
para los factores lineales de potencia mayor, por lo tanto, 

∂ =
1

(, − 1)#
Ä
8Q.

=
1

(−1)#
										⇒ 								∂ = 1 

ö =
1
,#
Ä
8Q"

=
1
1#
																													⇒ 							ö = 1 

Se aplica la derivación de ∂ y D para obtener las constantes µ y * del método de 
encubrimiento: 

µ =
(
(#
m

1
(, − 1)#

n	Ä
8Q.

=
−2

(, − 1)&
Ä
8Q.

=
−2
(−1)&

							⇒ 								A = 2 

* =
(
(#
m
1
,#
n	Ä

8Q"
=
−2
,&
Äè
8Q"

=
−2
1&
																																		⇒ 								C = −2 

 

Al comparar los métodos 2 y 3 se puede observar que los valores de las constantes 
son los mismos, entonces, el método 3 sería el más adecuado. La descomposición 
en fracciones parciales deseada es, 

1
,#(, − 1)#

=
2
,
+
1
,#
+

−2
, − 1

+
1

(, − 1)#
 

Finalmente,  

'
(,

,#(, − 1)#
= '

2
,
(, +'

1
,#
(, −'

2(,
, − 1

+'
(,

(, − 1)#

= 2'
(,
,
(, +',*#(, − 2'

(,
, − 1

+'
(,

(, − 1)#

= 2 ln|,| +
,*"

−1
− 2 ln|, − 1| +

(, − 1)*"

−1
+ *

= 2 ln|,| −
1
,
− 2 ln|, − 1| −

1
, − 1

+ * 
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10.'
10

(É − 1)(É# + 9)
(É 

Solución: 

Esta integral corresponde a la combinación de factores lineales y cuadráticos. 
Primero se descompone la fracción algebraica de la integral en fracciones parciales,  

10
(É − 1)(É# + 9)

=
µ

É − 1
+
∂É + *
É# + 9

 

Método 2: combinando los términos de los miembros del lado derecho de la 
ecuación, se obtiene, 

10
(É − 1)(É# + 9)

=
µ(É# + 9) + (∂É + *)(É − 1)

(É − 1)(É# + 9)
 

10 = µ(É# + 9) + (∂É + *)(É − 1) 

Mediante asignación de valores de É se obtienen µ, ∂, y *, es decir, 

Si É = 1: 10 = µ(10) + (∂ + *)(0) 								⇒ 							µ = 1 

Si É = 0: 10 = µ(9) + (∂ ∙ 0 + *)(−1) 

	10 = (1)(9) + C(−1) 																⇒ 							* = −1 

Si É = −1: 10 = µ[(−1)# + 9] + [∂(−1) + *](−2) 

				10 = (1)(10) + (−B − 1)(−2) 

				10 = 10 + 2B + 2																		 ⇒ 			B = −1 

La descomposición en fracciones parciales deseada es, 

10
(É − 1)(É# + 9)

=
1

É − 1
+
(−1)É + (−1)

É# + 9
 

Finalmente,  

'
10

(É − 1)(É# + 9)
(É = '

1
É − 1

(É + '
−É − 1
É# + 9

(É

= '
(É
É − 1

−'
É(É
É# + 9

−'
(É

É# + 9
 

En la primera y segunda integrales se aplica cambio de variable, y en la tercera 
integral se utiliza el Teorema 1.12 del capítulo 1. En consecuencia, 

N = É − 1						 ⇒ 								(N = (É 
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, = É# + 9				 ⇒ 								(, = 2É(É					 ⇒ 							É(É =
1
2
(, 

Finalmente, 

'
10

(É − 1)(É# + 9)
(É = '

(N
N
−
1
2
'
(,
,
−'

(É
É# + 9

= ln|N| −
1
2
ln|,| −

1
3
tan*"

É
3
+ *

= ln|É − 1| −
1
2
ln|É# + 9| −

1
3
tan*"

É
3
+ * 

 

11.'
#

(# + 1)#(## + 1)
(# 

Solución: 

Esta integral corresponde a la combinación de factores lineales repetidos y 
cuadráticos. Primero se descompone la fracción algebraica de la integral en 
fracciones parciales,  

#
(# + 1)#(## + 1)

=
µ

# + 1
+

∂
(# + 1)#

+
*# + ö
## + 1

 

Método 2: combinando los términos de los miembros del lado derecho de la 
ecuación, se obtiene, 

#
(# + 1)#(## + 1)

=
µ(# + 1)(## + 1) + ∂(## + 1) + (*# + ö)(# + 1)#

(# + 1)#(## + 1)
 

# = µ(# + 1)(## + 1) + ∂(## + 1) + (*# + ö)(# + 1)# 

Mediante asignación de valores de # se obtiene de manera inmediata ∂, mientras 
que µ, * y ö, se resuelve utilizando la regla de Cramer, 

Si # = −1: 			−1 = µ(0)(2) + ∂(2) + [*(−1) + ö](0) 

							−1 = 2∂										 ⇒ 							∂ = −
1
2

 

Si # = 0: 								0 = µ(1)(1) + B(1) + (* ∙ 0 + ö)(1)# 

									0 = A −
1
2
(1) + ö																									 ⇒ 														2µ + 2ö = 1							(1) 

Si # = 1: 								1 = µ(2)(2) + B(2) + (* ∙ 1 + ö)(2)# 
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									1 = 4A −
1
2
(2) + 4C + 4D									 ⇒ 				2µ + 2* + 2ö = 1							(2) 

Si # = 2: 								2 = µ(3)(5) + B(5) + (* ∙ 2 + ö)(3)# 

									2 = 15A −
1
2
(5) + 18C + 9D			 ⇒ 	10µ + 12* + 6ö = 3						(3) 

A continuación, se representa el sistema de ecuaciones, 

ƒ
2µ + 0* + 2ö = 1
2µ + 2* + 2ö = 1
10µ + 12* + 6ö = 3

 

Aplicando Cramer se obtiene la constante ö y después se reemplaza en las 
ecuaciones (1), (2) y (3). 

ö =

≈
2 0 1
2 2 1
10 12 3

≈

≈
2 0 2
2 2 2
10 12 6

≈

=

≈
2 0 1
2 2 1
10 12 3

2 0
2 2
10 12

≈

≈
2 0 2
2 2 2
10 12 6

2 0
2 2
10 12

≈

=
12 + 0 + 24 − 20 − 24 − 0
24 + 0 + 48 − 40 − 48

 

ö =
1
2

 

De la ecuación (1):   

2µ = 1 − 2ö								 ⇒ 							2µ = 1 − 2 ?
1
2
A 							⇒ 								A = 0 

De la ecuación (2): 

2* = 1 − 2µ − 2ö						 ⇒ 						2* = 1 − 2(0) − 2 ?
1
2
A 						⇒ 					* = 0 

La descomposición en fracciones parciales deseada es, 

#
(# + 1)#(## + 1)

=
0

# + 1
+

−1/2
(# + 1)#

+
0 ∙ # + 1/2
## + 1

= −
1
2

1
(# + 1)#

+
1
2

1
## + 1

 

Finalmente,  

'
#

(# + 1)#(## + 1)
(# = −

1
2
'

1
(# + 1)#

(# +
1
2
'

1
## + 1

(# 

En la primera integral se aplica un segundo cambio de variable y en la segunda se 
utiliza el teorema 1.12. 

, = # + 1												 ⇒ 										(, = (#	 
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Finalmente, 

'
#

(# + 1)#(## + 1)
(# = −

1
2
'
(,
,#
+
1
2
tan*" # + * = −

1
2
,*"

−1
	+
1
2
tan*" # + *

=
1
2,

+
1
2
tan*" # + * =

1
2(# + 1)

+
1
2
tan*" # + * 

 

12.'
sec# ^ (sec# ^ + 1)

tan& ^ + 1
(^ 

Solución: 

Este tipo de integral se resuelve aplicando primero un cambio de variable, y 
posterior se descompone mediante fracciones parciales.  

, = tan^ 								⇒ 							(, = sec# ^ (^	 

Recordemos la identidad trigonométrica tan# ^ + 1 = sec# ^, y sustituyendo en la 
integral, se obtiene: 

'
sec# ^ (sec# ^ + 1)

tan& ^ + 1
(^ = '

(tan# ^ + 1 + 1) sec# ^ (^
tan& ^ + 1

= '
(,# + 2)
,& + 1

(, 

Factorizando el denominador, se descompone la fracción algebraica en una fracción 
parcial, 

,# + 2
,& + 1

=
,# + 2

(, + 1)(,# − , + 1)
=

µ
, + 1

+
∂# + *

,# − , + 1
 

Se utiliza el método 2 de fracciones parciales, combinamos los términos de los 
miembros del lado derecho de la ecuación, se obtiene, 

,# + 2
(, + 1)(,# − , + 1)

=
µ(,# − , + 1) + (∂# + *)(, + 1)

(, + 1)(,# − , + 1)
 

,# + 2 = µ(,# − , + 1) + (∂# + *)(, + 1) 

Mediante asignación de valores de , se obtiene de manera inmediata µ, mientras 
que ∂ y *, se resuelve mediante sustitución, 

Si , = −1: 			(−1)# + 2 = µ[(−1)# − (−1) + 1] + [∂(−1) + *](0) 

									3 = 3µ		        ⇒       µ = 1 

De la expresión ,# + 2 = µ(,# − , + 1) + (∂# + *)(, + 1), se sustituye µ = 1 y 
se obtiene, 
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,# + 2 = ,# − , + 1 + (∂# + *)(, + 1) 

, + 1 = (∂# + *)(, + 1) 										⇒ 									∂# + * = 1 

Entonces la integral queda,  

'
sec# ^ (sec# ^ + 1)

tan& ^ + 1
(^ = '

µ
, + 1

(, +'
∂# + *

,# − , + 1
(,

= '
1

, + 1
(, +'

1
,# − , + 1

(, 

En la primera integral se aplica un segundo cambio de variable y en la segunda se 
completa cuadrado para utilizar el teorema 1.12. 

N = , + 1												 ⇒ 										(N = (,	 

,# − , + 1 = ?,# − , +
1
4
A + 1 −

1
4
= ?, −

1
2
A
#

+
3
4

 

En consecuencia, 

'
sec# ^ (sec# ^ + 1)

tan& ^ + 1
(^ = '

(N
N
+'

(,

F, −
1
2H

#
+ 34

= lnN +
1

√3
2

tan*"q
, − 12
√3
2

r + *

= ln|, + 1| +
2

√3
tan*"q

2, − 1
2
√3
2

r + *

= ln|, + 1| +
2

√3
tan*" ?

2, − 1

√3
A + * 

Finalmente, se sustituye el primer cambio de variable  

'
sec# ^ (sec# ^ + 1)

tan& ^ + 1
(^ = ln|tan ^ + 1| +

2

√3
tan*" ?

2 tan^ − 1

√3
A + * 

 

13.'
## − 29# + 5

(# − 4)#(## + 3)
(# 

Solución: 



140 

Similar al ejercicio 11, se trata una combinación de factores lineales repetidos y 
cuadráticos. Se descompone la fracción algebraica de la integral en fracciones 
parciales,  

## − 29# + 5
(# − 4)#(## + 3)

=
µ

# − 4
+

∂
(# − 4)#

+
*# + ö
## + 3

 

Método 2: combinando los términos de los miembros del lado derecho de la 
ecuación, se obtiene, 

## − 29# + 5
(# − 4)#(## + 3)

=
µ(# − 4)(## + 3) + ∂(## + 3) + (*# + ö)(# − 4)#

(# − 4)#(## + 3)
 

## − 29# + 5 = µ(# − 4)(## + 3) + ∂(## + 3) + (*# + ö)(# − 4)# 

Mediante asignación de valores de # se obtiene ∂, mientras que µ, * y ö, se 
resuelve utilizando la regla de Cramer, 

Si # = 4:   4# − 29(4) + 5 = µ(0)(19) + ∂(19) + [*(4) + ö](0)# 

		−95 = 19∂										 ⇒ 							∂ = −5 

Si # = 0:   5 = µ(−4)(3) + (−5)(3) + (* ∙ 0 + ö)(−4)# 

				5 = −12µ − 15 + 16ö																	 ⇒ 						−6µ + 8ö = 10															(1) 

Si # = 1:   1# − 29(1) + 5 = µ(−3)(4) + (−5)(4) + [*(1) + ö](−3)# 

			−23 = −12µ − 20 + 9* + 9ö				 ⇒ 					−4µ + 3* + 3ö = −1					(2) 

Si # = −1:   (−1)# − 29(−1) + 5 = µ(−5)(4) + (−5)(4) + [*(−1) + ö](−5)# 

35 = −20µ − 20 − 25* + 25ö		 ⇒ 										−4µ − 5* + 5ö = 11					(3) 

A continuación, se presenta el sistema de ecuaciones, 

ƒ
−6µ + 0* + 8ö = 10
−4µ + 3* + 3ö = −1
−4µ − 5* + 5ö = 11

 

Aplicando Cramer se obtiene la constante ö y después se reemplaza en las 
ecuaciones (1), (2) y (3). 

ö =

≈
−6 0 10
−4 3 −1
−4 −5 11

≈

≈
−6 0 8
−4 3 3
−4 −5 5

≈

=

≈
−6 0 10
−4 3 −1
−4 −5 11

−6 0
−4 3
−4 −5

≈

≈
−6 0 8
−4 3 3
−4 −5 5

−6 0
−4 3
−4 −5

≈
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ö =
−198 + 0 + 200 + 120 + 30 + 0
−90 + 0 + 160 + 96 − 90 + 0

=
152
76

 

ö = 2 

De la ecuación (1):   

6µ = 8ö − 10							 ⇒ 							6µ = 8(2) − 10								 ⇒ 									A = 1 

De la ecuación (2): 

3* = 4µ − 3ö − 1								 ⇒ 							3* = 4(1) − 3(2) − 1							 ⇒ 						* = −1 

La descomposición en fracciones parciales deseada es, 

## − 29# + 5
(# − 4)#(## + 3)

=
µ

# − 4
+

∂
(# − 4)#

+
*# + ö
## + 3

=
1

# − 4
+

−5
(# − 4)#

+
−# + 2
## + 3

 

En consecuencia,  

'
#

(# + 1)#(## + 1)
(# = '

1
# − 4

(# +'
−5

(# − 4)#
(# +'

2 − #
## + 3

(#

= '
(#
# − 4

− 5'
(#

(# − 4)#
+ 2'

(#
## + 3

−'
#

## + 3
(# 

En la primera, segunda y última integral se aplica un cambio de variable, en la 
tercera integral se utiliza el teorema 1.12, en consecuencia, 

, = # − 4											 ⇒ 										(, = (#	 

N = ## + 3									 ⇒ 									(N = 2#(#								 ⇒ 									#(# =
1
2
(N 

Por lo tanto, 

'
#

(# + 1)#(## + 1)
(# = '

(,
,
− 5'

(,
,#
+ 2 ∙

1

√3
tan*"

#

√3
−
1
2
'
(N
N

= ln|,| − 5 ∙
,*"

−1
+
2

√3
tan*" ?

#

√3
A −

1
2
ln|N| + *

= ln|# − 4| +
5

# − 4
+
2

√3
tan*" ?

#

√3
A −

1
2
ln|## + 3| + * 

 

14.'
#& + 10## + 3# + 36
(# − 1)(## + 4)#

(# 



142 

Solución: 

Este ejercicio trata de una fracción algebraica que contiene un factor lineal y 
factores cuadráticos repetidos. Se descompone la fracción algebraica de la integral 
en fracciones parciales,  

#& + 10## + 3# + 36
(# − 1)(## + 4)#

=
µ

# − 1
+
∂# + *
## + 4

+
ö# + ∆
(## + 4)#

 

Método 2: combinando los términos de los miembros del lado derecho de la 
ecuación, se obtiene, 

!! + 10!" + 3! + 36
(! − 1)(!" + 4)" = ,(!" + 4)" + (-! + .)(! − 1)(!" + 4) + (/! + 0)(! − 1)

(! − 1)(!" + 4)"  

!! + 10!" + 3! + 36 = ,(!" + 4)" + (-! + .)(! − 1)(!" + 4) + (/! + 0)(! − 1) 

Mediante asignación de valores de # se obtiene µ, mientras que ∂, *, ö y ∆, se 
resuelve utilizando la regla de Cramer, 

Si # = 1:   1& + 10(1)# + 3(1) + 36 = µ(5)# + (∂ + *)(0)(5) + [ö + ∆](0)# 

				50 = 25µ										 ⇒ 							µ = 2 

Si # = 0:   36 = (2)(4)# + (∂ ∙ 0 + *)(−1)(4) + (ö ∙ 0 + ∆)(−1) 

				36 = 32 − 4* − ∆											 ⇒ 						−4* − ∆ = 4															(1) 

Si # = −1:   42 = (2)(5)# + [∂(−1) + *](−2)(5) + [ö(−1) + ∆](−2) 

						−8 = 10∂ − 10* + 2ö − 2∆					 ⇒ 				5∂ − 5* + ö − ∆ = −4						(2) 

Si # = 2:   90 = (2)(8)# + [∂ ∙ 2 + *](1)(8) + [ö ∙ 2 + ∆](1) 

							16∂ + 8* + 2ö + ∆ = −38													(3) 

Si # = −2:   62 = (2)(8)# + [∂(−2) + *](−3)(8) + [ö(−2) + ∆](−3) 

			−66 = 48∂ − 24* + 6ö − 3∆				 ⇒ 			16∂ − 8* + 2ö − ∆ = −22			(4) 

A continuación, se presenta el sistema de ecuaciones, 

«

0∂ − 4* + 0ö − ∆ = 4
5∂ − 5* + ö − ∆ = −4

16∂ + 8* + 2ö + ∆ = −38
16∂ − 8* + 2ö − ∆ = −22

 

Aplicando Cramer se obtienen las constantes ∆ y ∂, para después reemplazarlas en 
las ecuaciones (1), y (2) y obtener las constantes * y ö. 
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∆ =

»

0 −4 0 4
5 −5 1 −4
16 8 2 −38
16 −8 2 −22

»

»

0 −4 0 −1
5 −5 1 −1
16 8 2 1
16 −8 2 −1

»

=

−(−4) ≈
5 1 −4
16 2 −38
16 2 −22

≈ − 4 ≈
5 −5 1
16 8 2
16 −8 2

≈

−(−4) ≈
5 1 −1
16 2 1
16 2 −1

≈ − (−1) ≈
5 −5 1
16 8 2
16 −8 2

≈

 

∆ =

−(−4) ≈
5 1 −4 5 1
16 2 −38 16 2
16 2 −22 16 2

≈ − 4 ≈
5 −5 1 5 −5
16 8 2 16 8
16 −8 2 16 −8

≈

−(−4) ≈
5 1 −1 5 1
16 2 1 16 2
16 2 −1 16 2

≈ − (−1) ≈
5 −5 1 5 −5
16 8 2 16 8
16 −8 2 16 −8

≈

 

∆ =

4[−220 − 608 − 128 − (−128 − 380 − 352)] −
4[80 − 160 − 128 − (128 − 80 − 160)]
4[−10 + 16 − 32 − (−32 + 10 − 16)] +
[80 − 160 − 128 − (128 − 80 − 160)]

 

∆ =
4[−956 + 860] − 4[−208 + 112]
4[−26 + 38] + [−208 + 112]

=
−384 + 384
48 − 96

=
0
−48

 

∆ = 0 

 

∂ =

»

4 −4 0 −1
−4 −5 1 −1
−38 8 2 1
−22 −8 2 −1

»

−48
 

∂ =

4 ≈
−5 1 −1
8 2 1
−8 2 −1

≈ − (−4) ≈
−4 1 −1
−38 2 1
−22 2 −1

≈ − (−1) ≈
−4 −5 1
−38 8 2
−22 −8 2

≈

−48
 

∂ =

4 »
»

−5 1 −1
8 2 1
−8 2 −1
−5 1 −1
8 2 	1

»
» + 4 »

»

−4 1 −1
−38 2 1
−22 2 −1
−4 1 −1
−38 2 1

»
» + »

»

−4 −5 1
−38 8 2
−22 −8 2
−4 −5 1
−38 8 2

»
»

−48
 

∂ =

4[10 − 16 − 8 − (−8 − 10 + 16)] + 4[8 + 76 − 22 − (38 − 8 + 44)]
+[−64 + 304 + 220 − (380 + 64 − 176)]

−48
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∂ =
4[−14 + 2] + 4[62 − 74] + [460 − 268]

−48
=
−48 − 48 + 192

−48
=

96
−48

 

∂ = −2 

De la ecuación (1): −4* − ∆ = 4										 ⇒ 								* = −1					 

De la ecuación (2):	5(−2) − 5(−1) + ö − 0 = −4									 ⇒ 					ö = 1	 

La descomposición en fracciones parciales deseada es, 

'
#& + 10## + 3# + 36
(# − 1)(## + 4)#

(# = '
µ

# − 1
(# +'

∂# + *
## + 4

(# +'
ö# + ∆
(## + 4)#

(#

= '
2

# − 1
(# + '

(−2)# + (−1)
## + 4

(# +'
(1)# + (0)
(## + 4)#

(#

= 2'
(#
# − 1

−'
2# + 1
## + 4

(# +'
#

(## + 4)#
(#

= 2'
(#
# − 1

−'
2#(#
## + 4

+'
(#

## + 4
+'

#(#
(## + 4)#

 

Aplicamos cambio de variable a la primera, segunda y última integral, mientras que 
la tercera integral se utiliza el teorema 1.12. En consecuencia, 

, = # − 1											 ⇒ 										(, = (#	 

N = ## + 4									 ⇒ 									(N = 2#(#								 ⇒ 									#(# =
1
2
(N 

Finalmente, 

'
#& + 10## + 3# + 36
(# − 1)(## + 4)#

(# = 2'
(,
,
−'

(N
N
+'

(#
## + 4

+
1
2
'
(N
N#

= 2 ln|,| − ln|N| +
1
2
tan*" F

#
2
H +

1
2
N*"

−1	
+ *

= 2 ln|# − 1| − ln|## + 4| +
1
2
tan*" F

#
2
H −

1
2(## + 4)

+ * 

 

15.'
1

#& + 1
(# 

Solución: 

Primero factorizamos la expresión del denominador y después descomponemos la 
fracción algebraica de la integral en fracciones parciales, por lo tanto, 
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'
1

#& + 1
(# = '

1
(# + 1)(## − # + 1)

(# 

Ahora expandimos la fracción parcial, 

1
(# + 1)(## − # + 1)

=
µ

# + 1
+

∂# + *
## − # + 1

 

Podemos determinar las constantes µ, ∂ y * con cualquiera de los métodos 
estudiados en esta sección.  Por ejemplo, utilizamos el método 3 (encubrimiento) 
para calcular µ, 

µ =
1

## − # + 1
Ä
6Q*"

=
1

1 + 1 + 1
										⇒ 											µ =

1
3
	 

Para obtener ∂ y * reemplazamos µ y operamos la fracción parcial, 

1
(# + 1)(## − # + 1)

=
1/3
# + 1

+
∂# + *

## − # + 1
 

1
(# + 1)(## − # + 1)

−
1

3(# + 1)
=

∂# + *
## − # + 1

 

3 − ## + # − 1
3(# + 1)(## − # + 1)

=
∂# + *

## − # + 1
 

−(## − # − 2)
3(# + 1)

= ∂# + * 

−(# + 1)(# − 2)
3(# + 1)

= ∂# + * 

−(# − 2)
3

= ∂# + * 

−
1
3
# +

2
3
= ∂# + *											 ⇒ 											∂ = −

1
3
					∧ 				* =

2
3

 

La descomposición en fracciones parciales deseada es, 

1
(# + 1)(## − # + 1)

=

1
3

# + 1
+
−13# +

2
3

## − # + 1
 

Finalmente,  

'
1

#& + 1
(# =

1
3
'

1
# + 1

(# −
1
3
'

#
## − # + 1

(# +
2
3
'

1
## − # + 1

(# 
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En la primera integral se aplica cambio de variable, la segunda integral se emplea 
artificio matemático, completar cuadrado y cambio de variable, y la tercera integral 
completamos cuadrados y empleamos el teorema 1.12. 

, = # + 1															 ⇒ 										(, = (# 

N = ## − # + 1					 ⇒ 										(N = (2# − 1)(#	 

 

'
1

#& + 1
(# =

1
3
'
(,
,
−
1
3
⋅
1
2
'
2# − 1 + 1
## − # + 1

(# +
2
3
'

1
## − # + 1

(#

=
1
3
ln|,| −

1
6
'

2# − 1
## − # + 1

(# +
1
2
'

1
## − # + 1

(#

=
1
3
ln|# + 1| −

1
6
'
(N
N
+
1
2
'

(#

F## − # +
1
4H −

3
4

=
1
3
ln|# + 1| −

1
6
ln|N| +

1
2
'

(#

F# −
1
2H

#
− Q√

3
2 R

#

=
1
3
ln|# + 1| −

1
6
ln(## − # + 1) +

1
2
1

√3
2

tan*"q
# −

1
2

√3
2

r + *

=
1
3
ln|# + 1| −

1
6
ln(## − # + 1) +

1

√3

√3

√3
tan*"q

2# − 1
2
√3
2

r + *

=
1
3
ln|# + 1| −

1
6
ln(## − # + 1) +

√3
3
tan*" ?

2# − 1

√3
A + *		 

 

15.'
2 cos& #

sin& # − 5 sin #
(#

E
&

E
(

 

Solución: 

Tenemos una integral con expresiones trigonométricas para lo cual debemos aplicar 
un artificio matemático con la expresión sin #, después factorizamos y usamos la 
I.T. sin# # = 1 − cos# #,  
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'
2cos& #

sin& # − 5 sin #
(#

E
&

E
(

= '
2cos& #

sin& # − 5 sin #
∙
sin #
sin #

(#

E
&

E
(

= '
2cos& # sin #
sin) # − 5 sin# #

(#

E
&

E
(

= '
2cos& # sin #

sin# # (sin# # − 5)
(#

E
&

E
(

= '
2cos& # sin #

(1 − cos# #)(− cos# # − 4)
(#

E
&

E
(

 

Evaluamos la integral mediante cambio de variable, por lo tanto, 

, = cos # (#									 ⇒ 								(, = −sin # (#								 ⇒ 							 sin # (# = −(, 

'
2cos& #

sin& # − 5 sin #
(#

E
&

E
(

= '
2,&(−(,)

(1 − ,#)(−,# − 4)

E
&

E
(

= '
2,&(,

(1 − ,#)(,# + 4)

E
&

E
(

 

Nuevamente empleamos cambio de variable, 

N = 1 − ,# 							⇒ 							 ,# = 1 − N							 ⇒ 							2,(, = −(N 

'
2cos& #

sin& # − 5 sin #
(#

E
&

E
(

= '
,# ∙ 2,(,

(1 − ,#)(,# + 4)

E
&

E
(

= '
(1 − N)(−(N)
N(1 − N + 4)

E
&

E
(

= −'
1 − N

N(5 − N)
(N

E
&

E
(

= '
(N

N(N − 5)

E
&

E
(

−'
N(N

N(N − 5)

E
&

E
(

= '
(N

N(N − 5)

E
&

E
(

−'
(N
N − 5

E
&

E
(

 

En la primera integral aplicamos fracciones parciales y en la segunda empleamos 
cambio de variable. Descomponemos la primera integral en fracciones parciales,  

1
N(N − 5)

=
µ
N
+

∂
N − 5

 

Obtenemos las constantes µ y ∂ aplicando el método del encubrimiento,  

µ =
1

u − 5
Ä
RQ.

=
1
−5

										⇒ 								µ = −
1
5

 

∂ =
1
N
Ä
4Q'

=
1
5
									⇒ 							∂ =

1
5

 

Realizamos el cambio de variable indicado anteriormente, 
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@ = N − 5									 ⇒ 											(@ = (N 

Sustituimos los resultados de la fracción parcial y del cambio de variable,  

'
2cos& #

sin& # − 5 sin #
(#

E
&

E
(

= '
µ
N
(N

E
&

E
(

+'
∂

N − 5
(N

E
&

E
(

−'
(@
@

E
&

E
(

= −
1
5
'

(N
N

E
&

E
(

+
1
5
'

(@
@

E
&

E
(

−'
(@
@

E
&

E
(

= −
1
5
'

(N
N

E
&

E
(

+
1
5
'

(@
@

E
&

E
(

−'
(@
@

E
&

E
(

= −
1
5
'

(N
N

E
&

E
(

−
4
5
'

(@
@

E
&

E
(

= Ä−
1
5
ln|N| −

4
5
ln|@| +ÄE

(

E
&

 

Reemplazamos las variables N, @ y , de los cambios de variables aplicados 
previamente, por lo tanto, 

'
2cos& #

sin& # − 5 sin #
(#

E
&

E
(

= Ä−
1
5
ln|1 − ,#| −

4
5
ln|N − 5|ÄE

(

E
&

= Ä−
1
5
ln|1 − cos# #| −

4
5
ln|−4 − ,#|ÄE

(

E
&

= Ä−
1
5
ln|1 − cos# #| −

4
5
ln|−4 − 1 + (1 − cos# #)|ÄE

(

E
&

= Ä−
1
5
ln|sin# #| −

4
5
ln|−5 + sin# #|ÄE

(

E
&

= m−
1
5
ln ÄFsin

Å
3
H
#
Ä −

4
5
ln ÄFsin

Å
3
H
#
− 5Än

− m−
1
5
ln ÄFsin

Å
6
H
#
Ä −

4
5
ln ÄFsin

Å
6
H
#
− 5Än

= m−
1
5
ln ?

3
4
A −

4
5
ln ?5 −

3
4
An − m−

1
5
ln ?

1
4
A −

4
5
ln ?5 −

1
4
An 

'
cos& #

sin& # − 5 sin #
(#

E
&

E
(

= −
1
5
ln ?

3
4
A −

4
5
ln ?

17
4
A +

1
5
ln ?

1
4
A +

4
5
ln ?

19
4
A 

Aplicamos la propiedad del cociente de logaritmo natural, 
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−
1
5
[ln 3 − ln 4] −

4
5
[ln 17 − ln 4] +

1
5
[ln 1 − ln 4] +

4
5
[ln 19 − ln 4] 

−
1
5
ln 3+

1
5
ln(4) −

4
5
ln(17)+

4
5
ln(4) +

1
5
ln(1)−

1
5
ln(4) +

4
5
ln(19)−

4
5
ln(4) 

4
5
ln(19) −

1
5
ln(3) −

4
5
ln(17) 

Finalmente,  

'
cos& #

sin& # − 5 sin #
(#

E
&

E
(

=
4
5
ln(19) −

1
5
ln(3) −

4
5
ln(17) 

 

2.5. Integración numérica: Reglas de Trapecio y de Simpson. 

Una técnica específica para calcular el valor exacto de una integral definida se basa 
en el Teorema Fundamental del Cálculo. Está técnica se fundamenta en el cálculo 
de antiderivadas denominado Cálculo Integral. Sin embargo, en algunas ocasiones 
habrá que aproximar el valor de la integral definida en lugar de hallar su valor 
exacto. En este caso, lo primero será no poder calcular una antiderivada del 
integrando. El segundo caso es cuando realmente no se conoce el integrando, sino 
únicamente los valores cuando se evalúa en determinados puntos. 

En esta sección se utilizan dos reglas para evaluar integrales en la que no es posible 
evaluar el integrando, las dos reglas que se utilizan son: Trapecio y Simpson, 

Regla del trapecio 

 $ = '!(#)(#

7

:

=
∆#
2
[!(#.) + 2!(#") + 2!(##) +⋯+ 2!(#$*") + !(#$)] 

Donde, 

∆# =
x − -
1

 

 

Regla de Simpson 

≥$ = '!(#)(#

7

:

=
∆#
3
[!(#.) + 4!(#") + 2!(##) +⋯+ 4!(#$*") + !(#$)] 
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Donde, 

∆# =
x − -
1

 

 

En los siguientes ejercicios utilizamos la regla del Trapecio para evaluar integrales 
definidas sin aplicar los teoremas abordados en capítulo 1 ni de alguna técnica de 
integración ya estudiada. 

1.'(#& + 1)(#

&

"

; 1 = 4 

Solución: 

Calculamos la longitud de cada subintervalo 1 de la integral definida en el intervalo 
cerrado [1, 3] para 1 = 4 subintervalos, en consecuencia, 

∆# =
x − -
1

=
3 − 1
4

= 0.5 

Cada subintervalo es 0.5, en la siguiente tabla se realizan los cálculos para 1 = 4, 

! "# #("#) = "! + 1 

0 1 #(1) = (1)! + 1 = 2 

1 1.5 #(1.5) = (1.5)! + 1 = 4.375 

2 2 #(2) = (2)! + 1 = 9 

3 2.5 #(2.5) = (2.5)! + 1 = 16.625 

4 3 #(3) = (3)! + 1 = 28 

 

Por lo tanto, utilizamos la regla del Trapecio: 

'(#& + 1)(#

&

"

=
0.5
2
[2 + 2(4.375) + 2(9) + 2(16.625) + 28] = 0.25(90) 

'(#& + 1)(#

&

"

= 22.5 
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2.'
1
#
(#

(

"

; 1 = 5 

Solución: 
Calculamos la longitud de cada subintervalo 1 de la integral definida en el intervalo 
cerrado [1, 6] para 1 = 5 subintervalos, en consecuencia, 

∆# =
x − -
1

=
6 − 1
5

= 1 

Cada subintervalo es 1, en la siguiente tabla se realizan los cálculos para 1 = 5, 

! "# #("#) =
1
" 

0 1 #(1) = 1
1 = 1 

1 2 #(2) = 1
2 = 0.5 

2 3 #(3) = 1
3 = 0.333 

3 4 #(4) = 1
4 = 0.25 

4 5 #(5) = 1
5 = 0.2 

5 6 #(6) = 1
6 = 0.167 

 

Por lo tanto, utilizamos la regla del Trapecio: 

'
1
#
(#

&

"

=
1
2
[1 + 2(0.5) + 2(0.333) + 2(0.25) + 2(0.2) + 0.167] = 0.5(3.733) 

'
1
#
(#

&

"

= 1.867 

 

3.'#G4 − ##(#

#

.

; 1 = 8 

Solución: 
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Calculamos la longitud de cada subintervalo 1 de la integral definida en el intervalo 
cerrado [0, 2] para 1 = 8 subintervalos, en consecuencia, 

∆# =
x − -
1

=
2 − 0
8

= 0.25 

La longitud de cada subintervalo es 1, en la siguiente tabla se realizan los cálculos 
para 1 = 5, 

1 #S !(#S) = #G4 − ## 

0 0 !(0) = 0 

1 0.25 !(0.25) = 0.25G4 − (0.25)# = 0.992 

2 0.5 !(0.5) = 0.5G4 − (0.5)# = 0.968 

3 0.75 !(0.75) = 0.75G4 − (0.75)# = 1.391 

4 1 !(1) = 1G4 − (1)# = 1.732 

5 1.25 !(1.25) = 1.25G4 − (1.25)# = 1.952 

6 1.5 !(1.5) = 1.5G4 − (1.5)# = 1.984 

7 1.75 !(1.75) = 1.75G4 − (1.75)# = 1.694 

8 2 !(2) = 2G4 − (2)# = 0 
 

Por lo tanto, utilizamos la regla del Trapecio: 

'#G4 − ##(#

#

.

=
0.25
2

[0 + 2(0.992) + 2(0.968) + 2(1.391) + 2(1.732)

+ 2(1.952) + 2(1.984) + 2(1.694) + 0] = 0.125(3.733) 

'#G4 − ##(#

#

.

= 2.678 

 

4.'s1 + √#(#

)

.

; 1 = 8 

Solución: 
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Calculamos la longitud de cada subintervalo 1 de la integral definida en el intervalo 
cerrado [0, 4] para 1 = 8 subintervalos, en consecuencia, 

∆# =
x − -
1

=
4 − 0
8

= 0.5 

Cada subintervalo es 0.5, en la siguiente tabla se realizan los cálculos para 1 = 8, 

1 #S !(#S) = s1 + √# 

0 0 !(0) = s1 + √0 = 1 

1 0.5 !(0.5) = s1 + √0.5 = 1.307 

2 1 !(1) = s1 + √1 = 1.414 

3 1.5 !(1.5) = s1 + √1.5 = 1.492 

4 2 !(2) = s1 + √2 = 1.554 

5 2.5 !(2.5) = s1 + √2.5 = 1.607 

6 3 !(3) = s1 + √3 = 1.653 

7 3.5 !(3.5) = s1 + √3.5 = 1.694 

8 4 !(4) = s1 + √4 = 1.732 
 

Por lo tanto, utilizamos la regla del Trapecio: 

's1 + √#(#

)

.

=
0.5
2
[1 + 2(1.307) + 2(1.414) + 2(1.492) + 2(1.554)

+ 2(1.607) + 2(1.653) + 2(1.694) + 1.732] = 0.25(3.733) 

's1 + √#(#

)

.

= 6.043 

 

5.'√# sin # (#

)

.

; 1 = 8 

Solución: 
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Calculamos la longitud de cada subintervalo 1 de la integral definida en el intervalo 
cerrado [0, 4] para 1 = 8 subintervalos, en consecuencia, 

∆# =
x − -
1

=
4 − 0
8

= 0.5 

Cada subintervalo es 0.5, en la siguiente tabla se realizan los cálculos para 1 = 8, 

1 #S !(#S) = √# sin # 

0 0 !(0) = √0 sin(0) = 0 

1 0.5 !(0.5) = √0.5 sin(0.5) = 0.339 

2 1 !(1) = √1 sin(1) = 0.841 

3 1.5 !(1.5) = √1.5 sin(1.5) = 1.222 

4 2 !(2) = √2 sin(2) = 1.286 

5 2.5 !(2.5) = √2.5 sin(2.5) = 0.946 

6 3 !(3) = √3 sin(3) = 0.244 

7 3.5 !(3.5) = √3.5 sin(3.5) = −0.656 

8 4 !(4) = √4 sin(4) = −1.514 

 

Por lo tanto, utilizamos la regla del Trapecio: 

'√# sin # (#

)

.

=
0.5
2
[0 + 2(0.339) + 2(0.841) + 2(1.222) + 2(1.286)

+ 2(0.946) + 2(0.244) + 2(−0.656) − 1.514] = 0.25(6.930) 

'√# sin # (#

)

.

= 1.733 

 

6.' ln(#& + 2)(#

(

)

; 1 = 10 
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Solución: 
Calculamos la longitud de cada subintervalo 1 de la integral definida en el intervalo 
cerrado [0, 4] para 1 = 8 subintervalos, en consecuencia, 

∆# =
x − -
1

=
6 − 4
10

= 0.2 

Cada subintervalo es 0.2, en la siguiente tabla se realizan los cálculos para 1 = 10, 

1 #S !(#S) = ln(#& + 2) 

0 4 !(4) = ln[(4)& + 2] = 4.19 

1 4.2 !(4.2) = ln[(4.2)& + 2] = 4.332 

2 4.4 !(4.4) = ln[(4.4)& + 2] = 4.468 

3 4.6 !(4.6) = ln[(4.6)& + 2] = 4.6 

4 4.8 !(4.8) = ln[(4.8)& + 2] = 4.724 

5 5 !(5) = ln[(5)& + 2] = 4.844 

6 5.2 !(5.2) = ln[(5.2)& + 2] = 4.96 

7 5.4 !(5.4) = ln[(5.4)& + 2] = 5.072 

8 5.6 !(5.6) = ln[(5.6)& + 2] = 5.18 

9 5.8 !(5.8) = ln[(5.8)& + 2] = 5.284 

10 6 !(6) = ln[(6)& + 2] = 5.384 

 
Por lo tanto, utilizamos la regla del Trapecio: 

'ln(#& + 2)(#

(

)

=
0.2
2
[4.19 + 2(4.332) + 2(4.468) + 2(4.6) + 2(4.724)

+ 2(4.844) + 2(4.96) + 2(5.072) + 2(5.18) + 2(5.284)

+ 5.384] 
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'ln(#& + 2)(#

(

)

= 9.65 

 

7.'
(#

√## + 1

"

.

; 1 = 5 

Solución: 
Calculamos la longitud de cada subintervalo 1 de la integral definida en el intervalo 
cerrado [0, 4] para 1 = 5 subintervalos, en consecuencia, 

∆# =
x − -
1

=
1 − 0
5

= 0.2 

Cada subintervalo es 0.2, en la siguiente tabla se realizan los cálculos para 1 = 5, 

! "# #("#) =
1

√"" + 1
 

0 0 #(0) = 1
4(0)" + 1

= 1 

1 0.2 #(0.2) = 1
4(0.2)" + 1

= 0.981 

2 0.4 #(0.4) = 1
4(0.4)" + 1

= 0.928 

3 0.6 #(0.6) = 1
4(0.6)" + 1

= 0.857 

4 0.8 #(0.8) = 1
4(0.8)" + 1

= 0.781 

5 1 #(1) = 1
4(1)" + 1

= 0.707 

 

Por lo tanto, utilizamos la regla del Trapecio: 

'
(#

√## + 1

"

.

=
0.2
2
[1 + 2(0.981) + 2(0.928) + 2(0.857) + 2(0.781) + 0.707] 

'
(#

√## + 1

"

.

= 0.880 
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8.'
(#

## + # + 1

,

"

; 1 = 8 

Solución: 
Calculamos la longitud de cada subintervalo 1 de la integral definida en el intervalo 
cerrado [0, 3] para 1 = 6 subintervalos, en consecuencia, 

∆# =
x − -
1

=
7 − 1
8

= 0.75 

Cada subintervalo es 0.75, en la siguiente tabla se realizan los cálculos para 1 = 8, 

! "# #("#) =
1

"" + " + 1 

0 1 #(1) = 1
(1)" + 1 + 1 = 0.333 

1 1.75 #(1.75) = 1
(1.75)" + 1.75 + 1 = 0.172 

2 2.5 #(2.5) = 1
(2.5)" + 2.5 + 1 = 0.103 

3 3.25 #(3.25) = 1
(3.25)" + 3.25 + 1 = 0.068 

4 4 #(4) = 1
(4)" + 4 + 1 = 0.048 

5 4.75 #(4.75) = 1
(4.75)" + 4.75 + 1 = 0.035 

6 5.5 #(5.5) = 1
(5.5)" + 5.5 + 1 = 0.027 

7 6.25 #(6.25) = 1
(6.25)" + 6.25 + 1 = 0.022 

8 7 #(7) = 1
(7)" + 7 + 1 = 0.018 

Por lo tanto, utilizamos la regla del Trapecio: 

	'
(#

## + # + 1

,

"

=
0.75
2

[0.333 + 2(0.172) + 2(0.103) + 2(0.068) + 2(0.048)

+ 2(0.035) + 2(0.027) + 2(0.022) + 0.018] 

	'
(#

## + # + 1

,

"

= 0.488 
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En los siguientes ejercicios se utiliza la regla de Simpson para evaluar las integrales 
definidas: 

9.'G#) + 1(#

#

.

; 1 = 6 

Solución: 
Calculamos la longitud de cada subintervalo 1 de la integral definida en el intervalo 
cerrado [0, 2] para 1 = 6 subintervalos, en consecuencia, 

∆# =
x − -
1

=
2 − 0
6

= 0.333 

Cada subintervalo es 0.5, en la siguiente tabla se realizan los cálculos para 1 = 6, 

! "# #("#) = 4"$ + 1 

0 0 #(0) = 4(0)$ + 1 = 1 

1 0.333 #(0.333) = 4(0.333)$ + 1 = 1.006 

2 0.667 #(0.667) = 4(0.667)$ + 1 = 1.094 

3 1 #(1) = 4(1)$ + 1 = 1.414 

4 1.333 #(1.333) = 4(1.333)$ + 1 = 2.04 

5 1.667 #(1.667) = 4(0)$ + 1 = 2.952 

6 2 #(2) = 4(2)$ + 1 = 4.123 

 
Por lo tanto, utilizamos la regla de Simpson: 

'G#) + 1(#

#

.

=
0.333
3

[1 + 4(1.006) + 2(1.094) + 4(1.414) + 2(2.04)

+ 4(2.952) + 4.123] = 0.25(90) 

'G#) + 1(#

#

.

= 3.653 

 

10. ' √sin # (#

E/#

.

; 1 = 6 
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Solución: 
Calculamos la longitud de cada subintervalo 1 de la integral definida en el intervalo 
cerrado [0, Å/2] para 1 = 6 subintervalos, en consecuencia, 

∆# =
x − -
1

=
Å/2 − 0

6
=
Å
12

= 15° 

Se sabe que E
#
= 90° y cada subintervalo es 15°, en la siguiente tabla se realizan los 

cálculos para 1 = 6, 

! "# #("#) = √sin " 

0 0 #(0) = 4sin(0) = 0 

1 15° #(15°) = √sin 15° = 0.509 

2 30° #(30°) = √sin 30° = 0.707 

3 45° #(45°) = √sin 45° = 0.841 

4 60° #(60°) = √sin 60° = 0.931 

5 75° #(75°) = √sin 75° = 0.983 

6 90° #(90°) = √sin 90° = 1 

 
Por lo tanto, utilizamos la regla de Simpson: 

' √sin # (#

E/#

.

=
Å/12
3

[0 + 4(0.509) + 2(0.707) + 4(0.841) + 2(0.931)

+ 4(0.983) + 1] =
Å
36
(13.608) 

' √sin # (#

E/#

.

= 1.188 

 

11.'G#& + #(#

)

#

; 1 = 4 
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Solución: 
Calculamos la longitud de cada subintervalo 1 de la integral definida en el intervalo 
cerrado [2, 4] para 1 = 4 subintervalos, en consecuencia, 

∆# =
x − -
1

=
4 − 2
4

= 0.5 

Cada subintervalo es 0.5, en la siguiente tabla se realizan los cálculos para 1 = 4, 

! "# #("#) = 4"! + " 

0 2 #(2) = 4(2)! + 2 = 3.162 

1 2.5 #(2.5) = 4(2.5)! + 2.5 = 4.257 

2 3 #(3) = 4(3)! + 3 = 5.477 

3 3.5 #(3.5) = 4(3.5)! + 3.5 = 6.81 

4 4 #(4) = 4(4)! + 4 = 8.246 

 

Por lo tanto, utilizamos la regla de Simpson: 

'G#& + #(#

)

#

=
0.5
3
[3.162 + 4(4.257) + 2(5.477) + 4(6.81) + 8.246] 

'G#& + #(#

)

#

=
0.5
3
(66.63) = 11.105 

 

12.'
o6

#
(#

)

#

; 1 = 10 

Solución: 
Calculamos la longitud de cada subintervalo 1 de la integral definida en el intervalo 
cerrado [2, 4] para 1 = 10 subintervalos, en consecuencia, 

∆# =
x − -
1

=
4 − 2
10

= 0.2 

Cada subintervalo es 0.2, en la siguiente tabla se realizan los cálculos para 1 = 10, 
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! "# #("#) =
9%
"  

0 2 #(2) = 9"
2 = 3.694 

1 2.2 #(2.2) = 9"."
2.2 = 4.102 

2 2.4 #(2.4) = 9".$
2.4 = 4.593 

3 2.6 #(2.6) = 9".'
2.6 = 5.178 

4 2.8 #(2.8) = 9".(
2.8 = 5.873 

5 3 #(3) = 9!
3 = 6.695 

6 3.2 #(3.2) = 9!."
3.2 = 7.666 

7 3.4 #(3.4) = 9!.$
3.4 = 8.813 

8 3.6 #(3.6) = 9!.'
3.6 = 10.166 

9 3.8 #(3.8) = 9!.(
3.8 = 11.763 

10 4 #(4) = 9$
4 = 13.649 

Por lo tanto, utilizamos la regla de Simpson: 

'
o6

#
(#

)

#

=
0.2
3
[3.694 + 4(4.102) + 2(4.593) + 4(5.178) + 2(5.873)

+ 4(6.695) + 2(7.666) + 4(8.813) + 2(10.166) + 4(11.763)

+ 13.649] =
0.2
3
(220.143) 

'
o6

#
(#

)

#

= 14.676 

 

13.' G## + 1
"

(#

#

.

; 1 = 8 
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Solución: 
Calculamos la longitud de cada subintervalo 1 de la integral definida en el intervalo 
cerrado [0, 2] para 1 = 8 subintervalos, en consecuencia, 

∆# =
x − -
1

=
2 − 0
8

= 0.25 

Cada subintervalo es 0.25, en la siguiente tabla se realizan los cálculos para 1 = 8, 

! "# #("#) = 4"" + 1!  

0 0 #(0) = 40" + 1! = 1 

1 0.25 #(0.25) = 4(0.25)" + 1! = 1.015 

2 0.5 #(0.5) = 4(0.5)" + 1! = 1.057 

3 0.75 #(0.75) = 4(0.75)" + 1! = 1.118 

4 1 #(1) = 4(1)" + 1! = 1.189 

5 1.25 #(1.25) = 4(1.25)" + 1! = 1.265 

6 1.5 #(1.5) = 4(1.5)" + 1! = 1.342 

7 1.75 #(1.75) = 4(1.75)" + 1! = 1.42 

8 2 #(2) = 4(2)" + 1! = 1.495 

 
Por lo tanto, utilizamos la regla de Simpson: 

' G## + 1
"

(#

#

.

=
0.25
3

[1 + 4(1.015) + 2(1.057) + 4(1.118) + 2(1.189)

+ 4(1.265) + 2(1.342) + 4(1.42) + 1.495] =
0.25
3

(28.943) 

' G## + 1
"

(#

#

.

= 2.412 

 

14.' sin(o..'=) (@

..'

.

; 1 = 8 

Solución: 
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Calculamos la longitud de cada subintervalo 1 de la integral definida en el intervalo 
cerrado [0, 0.5] para 1 = 8 subintervalos, en consecuencia, 

∆# =
x − -
1

=
0.5 − 0
8

= 0.0625 

Cada subintervalo es 0.0625, en la tabla se muestran los cálculos para 1 = 8, 

! "# #("#) = sin(9).*+) 

0 0 #(0) = sin(9).*∗)) = sin(1) = 0.841 

1 0.0625 #(0.0625) = sin(9).*∗).)'"*) = sin(1.032) = 0.858 

2 0.125 #(0.125) = sin(9).*∗).-"*) = sin(1.064) = 0.875 

3 0.1875 #(0.1875) = sin(9).*∗).-(.*) = sin(1.098) = 0.890 

4 0.25 #(0.25) = sin(9).*∗)."*) = sin(1.133) = 0.906 

5 0.3125 #(0.3125) = sin(9).*∗).!-"*) = sin(1.169) = 0.920 

6 0.375 #(0.375) = sin(9).*∗).!.*) = sin(1.206) = 0.934 

7 0.4375 #(0.4375) = sin(9).*∗).$!.*) = sin(1.244) = 0.947 

8 0.5 #(0.5) = sin(9).*∗).*) = sin(1.284) = 0.959 

Por lo tanto, utilizamos la regla de Simpson: 

' sin(o..'=) (@

..'

.

=
0.0625
3

[0.841 + 4(0.858) + 2(0.875) + 4(0.89) + 2(0.906)

+ 4(0.92) + 2(0.934) + 4(0.947) + 0.959] =
0.0625
3

(21.69) 

' sin(o..'=) (@

..'

.

= 0.452 

 

15.'
ln #
# + 1

(#

#

"

; 1 = 10 

Solución: 
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Calculamos la longitud de cada subintervalo 1 de la integral definida en el intervalo 
cerrado [1, 2] para 1 = 10 subintervalos, en consecuencia, 

∆# =
x − -
1

=
2 − 1
10

= 0.1 

Cada subintervalo es 0.1, en la tabla se muestran los cálculos para 1 = 10, 

! "# #("#) =
ln "
" + 1 

0 1 #(1) = ln1
1 + 1 = 0 

1 1.1 #(1.1) = ln1 . 1
1.1 + 1 =

ln1.1
2.1 = 0.0454 

2 1.2 #(1.2) = ln1.2
1.2 + 1 =

ln1.2
2.2 = 0.0829 

3 1.3 #(1.3) = ln1.3
1.3 + 1 =

ln1.3
2.3 = 0.1141 

4 1.4 #(1.4) = ln1.4
1.4 + 1 =

ln1.4
2.4 = 0.1402 

5 1.5 #(1.5) = ln1.5
1.5 + 1 =

ln1.5
2.5 = 0.1622 

6 1.6 #(1.6) = ln1.6
1.6 + 1 =

ln1.6
2.6 = 0.1808 

7 1.7 #(1.7) = ln1.7
1.7 + 1 =

ln1.7
2.7 = 0.1965 

8 1.8 #(1.8) = ln1.8
1.8 + 1 =

ln1.8
2.8 = 0.2099 

9 1.9 #(1.9) = ln1.9
1.9 + 1 =

ln1.9
2.9 = 0.2213 

10 2 #(2) = ln2
2 + 1 =

ln2
3 = 0.2310 

 

Por lo tanto, utilizamos la regla de Simpson: 

'
ln#
# + 1

(#

#

"

=
0.1
3
[0 + 4(0.0454) + 2(0.0829) + 4(0.1141) + 2(0.1402)

+ 4(0.1622) + 2(0.1808) + 4(0.1965) + 2(0.2099)

+ 4(0.2213) + 0.2310] =
0.1
3
(4.4166) 
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'
ln#
# + 1

(#

#

"

= 0.1472 

 
2.6. Integrales impropias. 

En la mayoría de los casos, las integrales que se encontrarán no son áreas acotadas 
en el plano. En este apartado se explica cómo calcular integrales infinitas, debido a 
que el intervalo de integración es infinito (hasta +∞ o −∞), o bien porque en los 
límites del intervalo la función a integrar tiende a infinito. Ahora bien, bastará con 
hacer una pequeña revisión de las técnicas de cálculo de primitivas y entender bien 
la noción de límite con el fin de comprender el contenido de esta sección. 

Considérese, la función ! para la cual @ ∈ (−∞, 0) ∪ (0,+∞) tiene como función, 

!(@) =
sin @

G|@|&
 

Existen 3 integrales impropias posibles con límites de integración infinitos, es decir, 

Caso 1: Si ! es continua sobre el intervalo [-, +∞), entonces: 

' !(#)(#

%U

:

= lim
7→%U

'!(#)(#

7

:

 

Si el lim
7→%U

 existe, entonces la integral converge, caso contrario diverge. 

 

Caso 2: Si ! es continua sobre el intervalo (−∞, x], entonces: 

'!(#)(#

7

*U

= lim
:→*U

'!(#)(#

7

:

 

Si el lim
:→*U

 existe, entonces la integral converge, caso contrario diverge. 

 

Caso 3: Si ! es continua sobre el intervalo (−∞,+∞), entonces: 

' !(#)(#

%U

*U

= '!(#)(#

W

*U

+' !(#)(#

%U

W

 

En este caso la integral converge si las dos integrales también convergen, y si al 
menos una de ellas diverge entonces la integral diverge. 
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A continuación, se presentan el desarrollo de ejercicios de integrales impropias, en 
las que se pueden incluir integrales inmediatas, por cambio de variables e inclusive 
alguna técnica de integración.  

1.'
(@

@# + 1

%U

.

 

Solución: 
Para evaluar la integral se utiliza la expresión 1.12 (véase capítulo 1) y después 
evaluamos los límites aplicando el caso 1, por lo tanto, 

'
(@

@# + 1

%U

.

= lim
7→%U

'
(@

@# + 1

7

.

= lim
7→%U

[|tan*" @|.
7] = lim

7→%U
(tan*" x − tan*" 0) 

'
(@

@# + 1

%U

.

= (tan*"∞− tan*" 0) 

Se sabe que, 

tan
Å
2
= ∞									 ⇒ 									

Å
2
= tan*"(∞) 

Finalmente, 

'
(@

@# + 1

%U

.

=
Å
2
					(converge) 

 

2.'
1

#(ln #)&
(#

%U

B

 

Solución: 
Para evaluar la integral requerimos utilizar los pasos del cambio de variable, por lo 
tanto, 

N = ln # 														⇒ 												(N =
(#
#

 

Sustituimos en la integral impropia (caso 1), y evaluamos, 

'
1

#(ln #)&
(#

%U

B

= lim
7→%U

'
1

(ln #)&
(#
#

7

B

= lim
7→%U

'
1
(N)&

(N

7

B

= lim
7→%U

'N*&(N

7

B
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'
1

#(ln #)&
(#

%U

B

= lim
7→%U

Œè
N*#

−2
è
B

7

œ = lim
7→%U

çÄ−
1

2(ln #)#
Ä
B

7

é 

'
1

#(ln #)&
(#

%U

B

= lim
7→%U

m−
1

2(ln x)#
+

1
2 ln o

n = lim
7→%U

m−
1

2(ln x)#
+
1
2
n 

'
1

#(ln #)&
(#

%U

B

=
1
2
					(converge) 

 

3.'
ln @
@#
(@

%U

"

 

Solución: 
Para evaluar la integral se debe aplicar la técnica de integración por partes 
(∫ N(, = N, − ∫,(N), por lo tanto, 

N = ln @ 																												'(, = '
1
@#
(@ 

(N =
(@
@
																																		, = '@*#(@ =

@*"

−1
= −

1
@

 

Ahora se evalúa la integral mediante integración por partes y después evaluamos 
los límites de la integral impropia (caso 1): 

'
ln @
@#
(@

%U

"

= lim
7→%U

'
ln @
@#
(@

7

"

= lim
7→%U

–(ln @) ?−
1
@
A − '−

1
@
(@
@
	

7

"

— 

'
ln @
@#
(@

%U

"

= lim
7→%U

–−
ln @
@
+ '@*#(@	

7

"

— = lim
7→%U

Œè−
ln @
@
+
@*"

−1
è
"

7

œ 

'
ln @
@#
(@

%U

"

= lim
7→%U

m?−
ln x
x
−
1
x
A − ?−

ln 1
1
−
1
1
An = lim

7→%U
?1 −

ln x
x
−
1
x
A 

Recordemos que, 

1
0
= ∞					 ⇒ 							

1
∞
= 0 
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'
ln @
@#
(@

%U

"

= lim
7→%U

?1 −
1
x
A − lim

7→%U
?
ln x
x
A = 1 −

1
∞
− lim

7→%U
?
1/x
1
A 

'
(@

@# + 1

%U

.

= 1 − lim
7→%U

?
1
x
A = 1 −

1
∞

 

'
(@

@# + 1

%U

.

= 1					(converge) 

 

4. '
#&

#) + 1
(#

&

*U

 

Solución: 
Para evaluar la integral requerimos utilizar los pasos del cambio de variable, por lo 
tanto, 

N = #) + 1													 ⇒ 												(N = 4#&(#										 ⇒ 									 #&(# =
1
4
(N 

Sustituimos en la integral impropia (caso 2), y evaluamos, 

'
#&

#) + 1
(#

&

*U

= lim
W→*U

'
1/4(N
N

.

W

=
1
4
lim
W→*U

'
(N
N

.

W

=
1
4
lim
W→*U

|ln N| 

'
#&

#) + 1
(#

&

*U

=
1
4
lim
W→*U

[ln |#) + 1 |]W& =
1
4
lim
W→*U

[ln|3) + 1| − ln|∫) + 1|] 

'
#&

#) + 1
(#

&

*U

= −∞														(diverge) 

 

5. '
1

## + 2# + 3
(#

.

*U

 

Solución: 
Antes de evaluar la integral se debe utilizar el método de completar cuadrados en 
el factor cuadrático, que se da como, 
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## + 2# + 3 = ç## + 2# + ?
2
2
A
#

é + 3 − ?
2
2
A
#

= (## + 2# + 1) + 3 − 1 

## + 2# + 3 = (# + 1)# + 2 

Sustituimos en la integral impropia (caso 2), y evaluamos mediante la expresión 1.12 
del capítulo 1, 

'
1

## + 2# + 3
(#

.

*U

= lim
W→*U

'
(#

(# + 1)# + 2

.

W

= lim
W→*U

Ä
1
-
tan*" F

,
-
HÄ
W

.

 

'
1

## + 2# + 3
(#

.

*U

= lim
W→*U

Ä
1

√2
tan*" ?

# + 1

√2
AÄ
W

.

 

'
1

## + 2# + 3
(#

.

*U

=
1

√2
lim
W→*U

mtan*" ?
1

√2
A − tan*"(∫)n 

'
1

## + 2# + 3
(#

.

*U

=
1

√2
mtan*" ?

1

√2
A − tan*"(∞)n 

Recordando que,  

tan*"(∞) =
Å
2

 

Finalmente,  

'
1

## + 2# + 3
(#

.

*U

=
1

√2
mtan*" ?

1

√2
A −

Å
2
n											(converge) 

 

6. '
#

I√## + 1J
& (#

%U

*U

 

Solución: 
Para evaluar la integral utilizamos los pasos del cambio de variable, por lo tanto, 

N = ## + 1													 ⇒ 												(N = 2#(#										 ⇒ 									#(# =
1
2
(N 

Sustituimos en la integral impropia (caso 3), y evaluamos, 
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'
#

I√## + 1J
& (#

%U

*U

= '
#

I√## + 1J
& (#

.

*U

+'
#

I√## + 1J
& (#

%U

.

 

'
#

I√## + 1J
& (#

%U

*U

= lim
W→*U

'

1
2(N

I√NJ
&

.

W

+ lim
X→%U

'

1
2(N

I√NJ
&

X

.

 

'
#

I√## + 1J
& (#

%U

*U

=
1
2
lim
W→*U

'N*&/#(N

.

W

+
1
2
lim
X→%U

'N*&/#(N

X

.

 

'
#

I√## + 1J
& (#

%U

*U

=
1
2
lim
W→*U

è
N*"/#

−1/2
	è
W

.

+
1
2
lim
X→%U

è
N*"/#

−1/2
	è
.

X

 

'
#

I√## + 1J
& (#

%U

*U

= − lim
W→*U

Ä
1

√N
Ä
W

.

− lim
X→%U

Ä
1

√N
		Ä
.

X

 

'
#

I√## + 1J
& (#

%U

*U

= − lim
W→*U

Ä
1

√## + 1
Ä
W

.

− lim
X→%U

Ä
1

√## + 1
		Ä
.

X

 

'
#

I√## + 1J
& (#

%U

*U

= − lim
W→*U

m?
1

√1
A − ?

1

√∫# + 1
An − lim

X→%U
m?

1

√(# + 1
A − ?

1

√1
An 

'
#

I√## + 1J
& (#

%U

*U

= −1 −
1
∞
− ?

1
∞
− 1A = 0											(converge) 

 

7.'
(#

## + 3# + 2

%U

.

 

Solución: 
La integral impropia (caso 1) se aplica el método de integración por fracciones 
parciales. Se descompone la fracción recordando el caso 1 para factores lineales. 

'
(#

## + 3# + 2

%U

.

= '
(#

(# + 2)(# + 1)

%U

.

= lim
7→%U

'
µ

# + 2
(#

7

.

+ lim
7→%U

'
∂

# + 1
(#

7

.

 

Se realiza la operación de la fracción parcial, y utilizamos el método de 
encubrimiento para calcular µ y ∂, por lo tanto, 
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1
(# + 2)(# + 1)

=
µ

# + 2
+

∂
# + 1

 

µ =
1

(# + 1)
Ä
6Q*#

=
1

(−2 + 1)
									⇒ 									µ = −1 

∂ =
1

(# + 2)
Ä
6Q*"

=
1

(−1 + 2)
									⇒ 									∂ = 1 

Después sustituimos los valores obtenidos en la integral descompuesta en 
fracciones parciales, 

'
(#

## + 3# + 2

%U

.

= lim
7→%U

'
−1
# + 2

(#

7

.

+ lim
7→%U

'
1

# + 1
(#

7

.

 

'
(#

## + 3# + 2

%U

.

= − lim
7→%U

'
(#
# + 2

7

.

+ lim
7→%U

'
(#
# + 1

7

.

 

'
(#

## + 3# + 2

%U

.

= lim
7→%U

[− ln|# + 2| + ln|# + 1|].
7 = lim

7→%U
mln Ä

# + 1
# + 2

Än
.

7

 

'
(#

## + 3# + 2

%U

.

= lim
7→%U

mln Ä
x + 1
x + 2

Ä − ln Ä
1
2
Än = lim

7→%U
mln Ä

x + 1
x + 2

Ä + ln 2n 

'
(#

## + 3# + 2

%U

.

= lim
7→%U

–ln ó
1 +

1
x

1 + 2x

ó— + ln 2 = ln ó
1 +

1
∞

1 + 2
∞

ó + ln 2 = ln 1 + ln 2 

'
(#

## + 3# + 2

%U

.

= ln2											(converge) 

 

8.'
# tan*" #
(1 + ##)#

(#

%U

.

 

Solución: 
Para evaluar la integral propuesta utilizamos la técnica de integración por partes, 
para lo cual se define N y (,, 

N = tan*" # 																														(, =
#

(1 + ##)#
(# 
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(N =
(#

1 + ##
																														, = −

1
2(1 + ##)

 

Sustituimos en la expresión definida por la integración por partes (N, − ∫,(N),  

'
# tan*" #
(1 + ##)#

(# = (tan*" #) m−
1

2(1 + ##)
n − '−

1
2(1 + ##)

∙
(#

1 + ##
 

'
# tan*" #
(1 + ##)#

(# = −
1
2
tan*" #
1 + ##

+
1
2
'

(#
(1 + ##)#

 

En la última integral se utiliza la técnica de integración por sustitución 
trigonométrica (caso 2), en consecuencia, 

# = tan^ 																										⇒ 												(# = sec# ^ (^ 

sec ^ = G1 + ## 													⇒ 												 sec# ^ = (1 + ##) 

Realizamos la sustitución trigonométrica, 

'
# tan*" #
(1 + ##)#

(# = −
1
2
tan*" #
1 + ##

+
1
2
'
sec# ^ (^
(sec# ^)#

= −
1
2
tan*" #
1 + ##

+
1
2
'

(^
sec# ^

 

'
# tan*" #
(1 + ##)#

(# = −
1
2
tan*" #
1 + ##

+
1
2
'cos# ^ (^ 

'
# tan*" #
(1 + ##)#

(# = −
1
2
tan*" #
1 + ##

+
1
2
'
1
2
(1 + cos 2^)(^ 

'
# tan*" #
(1 + ##)#

(# = −
1
2
tan*" #
1 + ##

+
1
4
^ +

1
4
∙
1
2
sin 2^ 

Se utiliza la identidad trigonométrica de un ángulo doble, y del triángulo rectángulo 
que representa al caso 2 de integrales por sustitución trigonométrica, es decir que, 

sin 2^ = 2 sin ^ cos ^ 

^ = tan*" #											sin ^ =
#

√1 + ##
																	cos ^ =

1

√1 + ##
	 

Sustituimos la identidad trigonométrica de sin 2^ y de ^, 

'
# tan*" #
(1 + ##)#

(# = −
1
2
∙
tan*" #
1 + ##

+
1
4
tan*" # +

1
8
(2 sin ^ cos ^) 

'
# tan*" #
(1 + ##)#

(# = −
1
2
∙
tan*" #
1 + ##

+
1
4
tan*" # +

1
4
?

#

√1 + ##
A ?

1

√1 + ##
A 
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'
# tan*" #
(1 + ##)#

(# = −
1
2
∙
tan*" #
1 + ##

+
1
4
tan*" # +

1
4
∙

#
1 + ##

 

Este resultado se sustituye en la integral impropia del caso 1, por lo tanto, 

'
# tan*" #
(1 + ##)#

(#

%U

.

= lim
7→%U

Œè−
1
2
∙
tan*" #
1 + ##

+
1
4
tan*" # +

1
2
∙

#
1 + ##

è
.

7

œ 

'
# tan*" #
(1 + ##)#

(#

%U

.

= lim
7→%U

çQ−
1
2
∙
tan*" x
1 + x#

+
1
4
tan*" x +

1
2
∙

x
1 + x#

R − (0)é 

'
# tan*" #
(1 + ##)#

(#

%U

.

= −
1
2
tan*"∞
∞

+
1
4
tan*"∞+

1
2
1/∞
1
∞# + 1

 

Recordemos que, 

Å
2
= tan*"(∞) 							M										

1
∞
= 0 

Finalmente, 

'
# tan*" #
(1 + ##)#

(#

%U

.

= −
1
2
(0) +

1
4
F
Å
2
H +

1
2
(0) 

'
# tan*" #
(1 + ##)#

(#

%U

.

=
Å
8
											(converge) 

 

9. Suponga que un cohete se lanza desde la superficie de la Tierra, sin considerar 
toda resistencia excepto la de gravedad. Si , millas por segundo es la velocidad 
necesaria para escapar del campo gravitacional de la Tierra, entonces  

,# = 2i¥#' #*#(#

%U

P

 

donde i es la gravedad constante medida en millas por segundo en la 
superficie de la Tierra y ¥ millas es el radio de la Tierra. Con i = 0.006094 y 
¥ = 3963, aproxime la velocidad de escape con tres dígitos significativos. 

Solución: 
Para evaluar la integral se utiliza el caso 1, por lo tanto, 
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,# = 2i¥# lim
7→%U

'#*#(#

7

P

= 2i¥# lim
7→%U

çÄ−
1
#
Ä
P

7

é = 2i¥# lim
7→%U

m−
1
x
− ?−

1
¥
An 

,# = 2i¥# m−
1
∞
− ?−

1
¥
An = 2i¥# ?

1
¥
A = 2i¥ 

Finalmente, con los datos de gravedad y radio de la Tierra, la velocidad es 

, = G2i¥ = G2(0.006094)(3963) 

, = 6.950	•Ñ““-É/É 

 

10. La velocidad promedio de las moléculas en un gas ideal es 

,̅ =
4

√Å
?
‘
2¥ 

A
&/#

' ,&o*
Y
#PZ8

%
(,

%U

.

 

donde ‘ es el peso molecular del gas, ¥ es la constante del gas,   es la 
temperatura del gas, y , es la velocidad molecular. Demostrar que 

,̅ = p
8¥ 
Å‘

 

Solución: 
Para evaluar la integral se utiliza la técnica de integración por partes, por lo tanto, 

ú = ,# 																									'(’ = ',o*
Y
#PZ8

%
(, 

Usamos cambio de variable para (’, 

N = −
‘
2¥ 

,# 							⇒ 						(N = −
‘
2¥ 

2,(,							 ⇒ 					,(, = −
¥ 
‘
(N 

Derivamos ú y sustituyendo el cambio de variable, queda 

(ú = 2,(,																								’ = 'o4 ?−
¥ 
‘
(NA = −

¥ 
‘
'o4(N = −

¥ 
‘
o*

Y
#PZ8

%
 

Sustituyendo en la expresión que define la integración por partes, queda 

',&o*
Y
#PZ8

%
(, = ú’ − '’(ú 

',&o*
Y
#PZ8

%
(, = (,#) ?−

¥ 
‘
o*

Y
#PZ8

%
A −'−

¥ 
‘
o*

Y
#PZ8

%
(2,(,) 
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',&o*
Y
#PZ8

%
(, = −

¥ 
‘
,#o*

Y
#PZ8

%
+
2¥ 
‘

',o*
Y
#PZ8

%
(, 

La última integral ya se obtuvo el resultado y se sustituye, por lo tanto, 

',&o*
Y
#PZ8

%
(, = −

¥ 
‘
,#o*

Y
#PZ8

%
+
2¥ 
‘

?−
¥ 
‘
o*

Y
#PZ8

%
A 

',&o*
Y
#PZ8

%
(, = −

¥ 
‘
,#o*

Y
#PZ8

%
+ 2?

¥ 
‘
A
#

o*
Y
#PZ8

%
 

Volviendo a la integral impropia inicial, utilizamos el caso 1 del primer tipo de 
integrales impropias,  

,̅ =
4

√Å
?
‘
2¥ 

A

&
#
lim
7→%U

',&o*
Y
#PZ8

%
(,

7

.

 

,̅ =
4

√Å
?
‘
2¥ 

A
&/#

lim
7→%U

Œè−
¥ 
‘
,#o*

Y
#PZ8

%
+ 2?

¥ 
‘
A
#

o*
Y
#PZ8

%
è
.

7

œ 

,̅ =
4

√Å
?
‘
2¥ 

A
&/#

lim
7→%U

âç−
¥ 
‘
x#o*

Y
#PZ7

%
+ 2?

¥ 
‘
A
#

o*
Y
#PZ7

%
é − ç2 ?

¥ 
‘
A
#

o.éü 

,̅ =
4

√Å
?
‘
2¥ 

A
&/#

ç0 + 2?
¥ 
‘
A
#
(0)é − ç2 ?

¥ 
‘
A
#

é =
4

√Å
p?

‘
2¥ 

A
&

ç2 ?
¥ 
‘
A
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√Å
p?
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A
&
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¥ 
‘
A
)

w— =
8

√Å
p?

‘
2¥ 

A
&

∙ ?
¥ 
‘
A
)

=
8

√Å
p

‘&

8¥& &
∙
¥) )

‘)  

,̅ =
8

√Å
p
¥ 
8‘

=
√8#

√Å
p
¥ 
8‘

= p
8#

Å
¥ 
8‘

 

,̅ = p
8¥ 
Å‘

							÷≤≤ö 

 

En los ejercicios desarrollados se utilizaron el primer tipo de integrales impropias 
(casos 1 a 3), ahora se describe y analizan el segundo caso de integrales impropias, 
es decir, que se trata de integrales discontinuas. Éstas son integrales que tiene 
integrandos discontinuos. El procedimiento aquí es básicamente el mismo con una 
sutil diferencia. A continuación, se muestran los casos generales que estudiaremos 
para estas integrales: 



176 

Caso 1: Si ! es continua sobre el intervalo [-, x), pero no continua en # = x 
entonces, 

'!(#)(#

7

:

= lim
[→7&

'!(#)(#

[

:

 

si el límite existe y es finito. Téngase en cuenta que en este caso es imprescindible 
utilizar un límite por la izquierda, debido a que el intervalo de integración se 
extiende por toda la parte izquierda del límite superior. 

 

Caso 2: Si ! es continua sobre el intervalo (-, x], pero no continua en # = - 
entonces, 

'!(#)(#

7

:

= lim
[→:'

'!(#)(#

7

[

 

si el límite existe y es finito. De manera similar al caso 1, este caso es imprescindible 
utilizar un límite por la derecha, debido a que el intervalo de integración se extiende 
por toda la parte derecha del límite superior. 

 

Caso 3: Si ! no es continua en # = ∫ donde - < ∫ < x entonces, 

'!(#)(#

7

:

= '!(#)(#

W

:

+'!(#)(#

7

W

 

De la misma forma que en el caso del intervalo infinito, es necesario que ambas 
integrales sean convergentes entre sí para que la integral también lo sea. En caso 
de que alguna de las dos integrales sea divergente, también lo será esta integral. 

 

Caso 4: Si ! no es continua en # = - y # = x entonces, 

'!(#)(#

7

:

= '!(#)(#

W

:

+'!(#)(#

7

W

 

En la que ∫ es cualquier número, y es necesario que ambas integrales sean 
convergentes entre sí para que la integral también lo sea.  
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A continuación, se presentan el desarrollo de ejercicios para el segundo tipo de 
integrales impropias (4 casos), en las que se pueden incluir integrales inmediatas, 
por cambio de variables e inclusive alguna técnica de integración.  

11.'
1

#√#
(#

&

.

 

Solución: 
Para evaluar este segundo tipo de integración impropia se utiliza el caso 2, en la que 
# = 0 no es continua, por lo tanto, 

'
1

#√#
(#

&

.

= lim
[→.'

'
1

#√#
(#

&

[

= lim
[→.'

'#*&/#(#

&

[

= lim
[→.'

çÄ−
2

√#
Ä
[

&

é 

'
1

#√#
(#

&

.

= lim
[→.'

m−
2

√3
− ?−

2
É
An = −

2

√3
+ lim

[→.'
?
2
É
A = −

2

√3
+
2

√0
 

'
1

#√#
(#

&

.

= ∞																	(diverge)	 
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1

√1 − ##
(#

"

.

 

Solución: 
Este tipo de integral se resuelve aplicando el teorema 1.11 (véase capítulo 1) y a su 
vez corresponde al segundo tipo de integración impropia (caso 1), en la que # = 1 
no es continua, por lo tanto, 

'
1

√1 − ##
(#

"

.

= lim
[→"&

'
1

√1 − ##
(#

[

.

= lim
[→"&

[|sin*" #|.
[] = lim

[→"&
[sin*" É − sin*" 0] 

'
1

#√#
(#

&

.

= lim
[→"&

[sin*" É − 0] = sin*"(1) =
Å
2
										(converge)	 

 

13.'
cos #

√1 − sin #
(#

E

.
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Solución: 
Este tipo de integral se resuelve aplicando cambio de variable,  

N = 1 − sin # 									⇒ 							(N = −cos # (#								 ⇒ 					 cos # (# = −(N 

Además, corresponde al segundo tipo de integración impropia (caso 3), en la que 
# = E

#
 no es continua y 0 < E

#
< Å, por lo tanto 

'
cos #

√1 − sin #
(#

E

.

= lim
[→E/#&

'
−(N

√N

[

.

+ lim
=→E/#'

'
−(N

√N

E

=

 

'
cos #

√1 − sin #
(#

E

.

= − lim
[→E/#&

'N*"/#(N

[

.

− lim
=→E/#'

'N*"/#(N

E

=

 

'
cos #

√1 − sin #
(#

E

.

= − lim
[→E/#&

t�2√N�.
[
u − lim

=→E/#'
t�2√N�=

E
u 

'
cos #

√1 − sin #
(#

E

.

= −2 lim
[→E/#&

t�√1 − sin #�.
[
u − 2 lim

=→E/#'
t�√1 − sin #�=

E
u 

'
cos #

√1 − sin #
(#

E

.

= −2 lim
[→E/#&

ë√1 − sin É − √1í − 2 lim
=→E/#'

ë√1 − √1 − sin @í 

'
cos #

√1 − sin #
(#

E

.

= −2Qs1 − sin
Å
2
− 1R − 2Q1 − s1 − sin

Å
2
R 

'
cos #

√1 − sin #
(#

E

.

= −2I√1 − 0 − 1J − 2I1 − √1 − 0J = 0 

 

14.'
##

√1 − ##
(#

"

.

 

Solución: 
Para evaluar la integral propuesta utilizamos la técnica de integración por 
sustitución trigonométrica (caso 1). La figura muestra el triángulo rectángulo que 
representa al caso 1. 

# = sin ^ 																				⇒ 												(# = cos ^ (^ 
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cos ^ = G1 − ## 

Realizamos la sustitución trigonométrica, 

'
##

√1 − ##
(# = '

sin# ^ cos ^ (^
cos ^

= 'sin# ^ (^ 

Aplicamos la siguiente identidad trigonométrica, 

sin# ^ =
1
2
(1 − cos 2^) 

Por lo tanto, 

'
##

√1 − ##
(# =

1
2
'(1 − cos 2^) =

1
2
^ −

1
4
sin 2^ 

Se utiliza la identidad trigonométrica de un ángulo doble, y para el triángulo 
rectángulo que representa al caso 1 de integrales por sustitución trigonométrica, 
entonces, 

sin 2^ = 2 sin ^ cos ^ 

^ = sin*" #																								sin ^ = #																									 cos ^ = G1 − ##	 

Sustituimos la identidad trigonométrica de sin 2^ y de ^ 

'
##

√1 − ##
(# =

1
2
sin*" # −

1
4
(2 sin ^ cos ^) =

1
2
sin*" # −

1
2
(sin ^ cos ^) 

'
##

√1 − ##
(# =

1
2
sin*" # −

1
2
#G1 − ## =

1
2
Fsin*" # − #G1 − ##H 

Este resultado se sustituye en la integral impropia del caso 1, en la que # = 1 no es 
continua, por lo tanto, 

'
##

√1 − ##
(#

"

.

= lim
[→"&

çÄ
1
2
Fsin*" # − #G1 − ##HÄ

.

[

é 

'
##

√1 − ##
(#

"

.

=
1
2
lim
[→"&

tFsin*" É − ÉG1 − É#H − Fsin*" 0 − 0G1 − 0#Hu 
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'
##

√1 − ##
(#

"

.

=
1
2
lim
[→"&

tFsin*" É − ÉG1 − É#Hu =
1
2
Isin*" 1 − √0J =

1
2
(sin*" 1) 

'
##

√1 − ##
(#

"

.

=
Å
4

 

 

15.'?
1

√#
+

1

√1 − #
A(#

"

.

 

Solución: 
Este tipo de integral corresponde al segundo tipo de integración impropia (caso 4) 
en la que no es continua en # = 0 y # = 1, por lo tanto 

'?
1

√#
+

1

√1 − #
A(#

"

.

= lim
[→.'

' ?
1

√#
+

1

√1 − #
A (#

"/#

[

+ lim
=→"&

'?
1

√#
+

1

√1 − #
A (#

=

"/#

 

'?
1

√#
+

1

√1 − #
A(#

"

.

= lim
[→.'

t�2√# − 2√1 − #�[
"/#
u + lim

=→"&
t�2√# − 2√1 − #�"/#

=
u 

'?
1

√#
+

1

√1 − #
A(#

"

.

= 2 lim
[→.'

ë−√É + √1 − Éí + 2 lim
=→"&

ë√@ − √1 − @í 

'?
1

√#
+

1

√1 − #
A(#

"

.

= 2I−√0 + √1 − 0J + 2I√1 + √1 − 1J 

'?
1

√#
+

1

√1 − #
A(#

"

.

= 2(1) + 2(1) = 2 + 2 

'?
1

√#
+

1

√1 − #
A(#

"

.

= 4 

 

16.'
1

√2# − ##
(#

#

.

 

Solución: 
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La expresión 2# − ## se realiza la operación de completar cuadrados: 

2# − ## = −(## − 2#) = − ç## − 2# + ?
−2
2
A
#

− ?
2
2
A
#

é = 1 − (## − 2# + 1) 

2# − ## = 1 − (# − 1)# 

Sustituimos en el denominador del integrando, y se resuelve aplicando el teorema 
1.11 (véase capítulo 1) y además corresponde al segundo tipo de integración 
impropia (caso 4), en la que en # = 0 y # = 2 no es continua, por lo tanto,  

'
1

√2# − ##
(#

#

.

= lim
[→.'

'
1

G1 − (# − 1)#
(#

"

[

+ lim
=→#&

'
1

G1 − (# − 1)#
(#

=

"

 

'
1

√2# − ##
(#

#

.

= lim
[→.'

[|sin*"(# − 1)|["] + lim
=→#&

[|sin*"(# − 1)|"
= ] 

'
1

√2# − ##
(#

#

.

= lim
[→.'

[0 − sin*"(É − 1)] + lim
=→#&

[sin*"(@ − 1) − 0] 

'
1

√2# − ##
(#

#

.

= −sin*"(−1) + sin*"(1) 

Se sabe que, 

sin F
Å
2
H = 1												 ⇒ 								

Å
2
= sin*"(1)	 

sin F−
Å
2
H = −1				 ⇒ 				−

Å
2
= sin*"(−1)						 

Finalmente, 

'
1

√2# − ##
(#

#

.

= −F−
Å
2
H +

Å
2

 

'
1

√2# − ##
(#

#

.

= Å																	(converge)	 
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Capítulo 3: 
Aplicaciones de 

integración: 
áreas, 

volúmenes y 
longitud de arco
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3.1. Área de una región plana. 

Supóngase la gráfica de una función positiva M = !(#) y que se desea obtener el 
área de la curva M = !(#), el eje # y las rectas # = - y # = x (véase la figura del 
área sombreada debajo de la curva). Si la curva y = f(x) no es una recta, por ahora 
no se puede calcular el área con precisión. 

 
Si el área está completamente por encima del eje x, como ocurre en este caso, viene 
dada por la integral definida: 

µ = '!(#)(#

7

:

								(3.1) 

Considérese la región del área "µ(#)" sombreada S comprendida entre dos curvas 
M = !(#) e M = i(#) y entre las rectas verticales # = - y # = x, donde ! y i son 
funciones continuas y !(#) ≥ i(#) (véase figura izquierda) o i(#) ≥ !(#) para 
todo # en [-, x]. 

 

Por lo tanto, el área para !(#) ≥ i(#) y i(#) ≥ !(#) respectivamente son: 

µ = '[!(#) − i(#)](#

7

:

						(3.2)																								µ = '[i(#) − !(#)](#

7

:

						(3.3) 

La siguiente figura muestra la interpretación grafica del área entre dos curvas para 
las ecuaciones 3.2 y 3.3. 
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La siguiente figura muestra las áreas µ", µ# y µ& comprendidas entre las curvas !(#) 
y i(#). Para µ" se observa que !(#) ≥ i(#) en el intervalo [-, x], mientras que en 
la superficie µ# se observa que i(#) ≥ !(#) en el intervalo [x, ∫], y finalmente en 
la superficie µ& se observa nuevamente que !(#) ≥ i(#) en el intervalo [∫, (]. Por 
lo tanto, el área total es definida por: 

µZ = '[!(#) − i(#)](#

7

:

+'[i(#) − !(#)](#

W

7

+'[!(#) − i(#)](#

X

W

			(3.4) 

 

La explicación del área bajo una curva y entre dos o más curvas fue descrita y 
analizada en función de "#", ahora se presenta con relación a la variable "M"	. 

µ = '[ÿP − ÿ\](M

X

W

= '[!(M) − i(M)](M

X

W

						(3.5) 
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1. Calcular el área entre las curvas !(#) = ## y i(#) = #. 

Solución: 

Primero calculamos los puntos de intersección entre las funciones !(#) y i(#), 
igualando ambas funciones: 

!(#) = i(#)	

## = #																						 ⇒ 												 ## − # = 0	

#(# − 1) = 0										 ⇒ 							# = 0		 ∧ 		# = 1	

Los puntos de intersección 0 y 1 se muestran en la figura y corresponden a los límites 
a y b de la integral del área entre dos curvas (véase la región sombreada entre las 
curvas g y f). Por lo tanto, 

µ = '[i(#) − !(#)](#

7

:

= '[(#) − (##)](#

"

.

= '(# − ##)(#

"

.

= Ä
1
2
## −

1
3
#&Ä

.

"

=
1
2
(1)# −

1
3
(1)& =

1
2
−
1
3

=
1
6
N# 

 

2. Calcular el área entre las curvas !(#) = ## − 2# y i(#) = 4# − ##. 

Solución: 
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Obtenemos los puntos de intersección entre las funciones !(#) y i(#), igualando 
dichas funciones: 

!(#) = i(#)	

## − 2# = 4# − ## 													⇒ 												2## − 6# = 0	

2#(# − 3) = 0																					 ⇒ 														# = 0		 ∧ 		# = 3	

Los puntos 0 y 3 se muestran en la figura y corresponden a los límites a y b de la 
integral del área de la región sombreada entre las curvas g y f. Por lo tanto, 

µ = '[i(#) − !(#)](#

7

:

= '[(4# − ##) − (## − 2#)](#

&

.

= '(6# − 2##)(#

&

.

= Ä3## −
2
3
#&Ä

.

&

= 3(3)# −
2
3
(3)& = 27 − 18

= 9	N# 

 

3. Calcular el área entre las curvas !(#) = #& y i(#) = √#
!  (primer cuadrante). 

Solución: 

Igualamos las funciones !(#) y i(#) para obtener los puntos de intersección: 

#& = √#
! 																⇒ 											 #- = #										 

#- − # = 0												 ⇒ 											#(#/ − 1) = 0 

# = 0	 ∧ 		# = ±1										  
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Los puntos de intersección son -1, 0, 1 pero la restricción del problema se debe 
considerar el primer cuadrante, es decir los puntos 0 y 1. En la figura se muestran 
los límites a y b del área de la región sombreada entre las curvas g y f. Por lo tanto, 

µ = '[i(#) − !(#)](#

7

:

= 'ëI#"/&J − (#&)í(#

"

.

= 'I#"/& − #&J(#

"

.

= Ä
3
4
#)/& −

1
4
#)Ä

.

"

=
3
4
(1))/& −

1
4
(1)) =

3
4
−
1
4

=
1
2
	N# 

 

4. Calcular el área entre las curvas !(#) = 4(1 − ##) y i(#) = 1 − ##. 

Solución: 

Primero calculamos los puntos de intersección entre las funciones !(#) y i(#), 
igualando ambas funciones: 

4(1 − ##) = 1 − ## 												⇒ 											4 − 4## = 1 − ##										 

3 = 3## 																																	⇒ 											# = ±1										  

Los puntos de intersección son -1 y 1. En la figura se muestran los límites a y b del 
área de la región sombreada entre las curvas f y g. Por lo tanto, 
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µ = '[!(#) − i(#)](#

7

:

= '[(4 − 4##) − (1 − ##)](#

"

*"

= '(3 − 3##)(#

"

*"

= |3# − #&|*"
" = [3(1) − (1)&] − [3(−1) − (−1)&]

= [3 − 1] − [−3 + 1] = 2 − (−2)

= 4	N# 

 

5. Calcular el área entre las curvas !(#) = 6 − ## y i(#) = ## + 4#. 

Solución: 

Igualando las funciones f y g se obtienen los puntos de intersección entre ellas: 

6 − ## = ## + 4#																 ⇒ 											 ## + 2# − 3 = 0	 

(# + 3)(# − 1) = 0													 ⇒ 										# = −3	 ∧ 		# = 1										  

Los puntos de intersección son -3 y 1. En la figura se muestran los límites a y b del 
área de la región sombreada entre las curvas f y g. Por lo tanto, 

µ = '[!(#) − i(#)](#

7

:

= '[(6 − ##) − (## + 4#)](#

"

*&

= '(6 − 4# − 2##)(#

"

*&

= Ä6# − 2## −
2
3
#&Ä

*&

"
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µ = m6(1) − 2(1)# −
2
3
(1)&n − m6(−3) − 2(−3)# −

2
3
(−3)&n

= m6 − 2 −
2
3
n − [−18 − 18 + 18] =

10
3
+ 18

=
64
3
	N# 

 

6. Calcular el área entre las curvas !(#) = ## − 2# − 3 y i(#) = 2# + 2 sobre 
[−1, 6]. 

Solución: 

Igualando las funciones f y g se obtienen los puntos de intersección entre ellas: 

## − 2# − 3 = 2# + 2											 ⇒ 											 ## − 4# − 5 = 0	 

(# + 1)(# − 5) = 0																 ⇒ 										# = −1	 ∧ 		# = 5										  

Los puntos de intersección son -1 y 5. En la figura se observan dos regiones 
sombreadas considerando el rango dado por el problema de [−1, 6] en la que se 
encuentran los dos puntos de intersección. El área 1 (µ") corresponde a la región 
sombreada entre las curvas g y f, y el área 2 (µ#) de la región sombreada entre las 
curvas f y g. Por lo tanto, 

µ = µ" + µ# = '[i(#) − !(#)](#

7

:

+'[!(#) − i(#)](#

W

7
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µ = µ" + µ# = '[(2# + 2) − (## − 2# − 3)](#

'

*"

+'[(## − 2# − 3) − (2# + 2)](#

(

'

= '(5 + 4# − ##)(#

'

*"

+'(## − 4# − 5)(#

(

'

= Ä5# + 2## −
1
3
#&Ä

*"

'

+ Ä
1
3
#& − 2## − 5#Ä

'

(

= Çm5(5) + 2(5)# −
1
3
(5)&n − m5(−1) + 2(−1)# −

1
3
(−1)&ná

+ Çm
1
3
(6)& − 2(6)# − 5(6)n − m

1
3
(5)& − 2(5)# − 5(5)ná

= Çm75 −
125
3
n − m−3 +

1
3
ná + Ç[−30] − m

125
3

− 75ná

= 75 + 3 −
125
3

−
1
3
− 30 −

125
3

+ 75 = 123 −
251
3

=
118
3
	N# 
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7. Hallar el área entre las curvas !(#) = 2#& − 3## − 9# y i(#) = #& − 2## −
3#. 

Solución: 

Igualando las funciones f y g se obtienen los puntos de intersección entre ellas: 

2#& − 3## − 9# = #& − 2## − 3#									 ⇒ 							 #& − ## − 6# = 0	 

#(## − # − 6) = 0																																						 ⇒ 						#(# + 2)(# − 3)		 

# = 0	 ∧ 		# = −2	 ∧ 		# = 3										  

Los puntos de intersección son -2, 0 y 3. En la figura se observan dos regiones 
sombreadas considerando los puntos de intersección. El área 1 (µ") corresponde a 
la región sombreada entre las curvas f y g, y el área 2 (µ#) de la región sombreada 
entre las curvas g y f. Por lo tanto, 

µ = µ" + µ# = '[!(#) − i(#)](#

7

:

+'[i(#) − !(#)](#

W

7

= '[(2#& − 3## − 9#) − (#& − 2## − 3#)](#

.

*#

+'[(#& − 2## − 3#) − (2#& − 3## − 9#)](#

&

.

= '(#& − ## − 6#)(#

.

*#

+'(6# + ## − #&)(#

&

.

= Ä
1
4
#) −

1
3
#& − 3##Ä

*#

.

+ Ä3## +
1
3
#& −

1
4
#)Ä

.

&

= Çm
1
4
(0)) −

1
3
(0)& − 3(0)#n − m

1
4
(−2)) −

1
3
(−2)& − 3(−2)#ná

+ Çm3(3)# +
1
3
(3)& −

1
4
(3))n − m3(0)# +

1
3
(0)& −

1
4
(0))ná

= Ç[0] − m−8 +
8
3
ná + Çm36 −

81
4
n − [0]á = 44 −

8
3
−
81
4

=
253
12

	N# 
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8. Hallar el área entre las curvas !(#) = "
&
#& − #

&
## − 5# y i(#) = #& − 4## −

11# + 30. 

Solución: 

Igualando las funciones f y g se obtienen los puntos de intersección entre ellas: 

1
3
#& −

2
3
## − 5# = #& − 4## − 11# + 30				 ⇒ 				 #& − 5## − 9# + 45 = 0 

##(# − 5) − 9(# − 5) = 0																																	 ⇒ 				 (# − 5)(## − 9) = 0		 

# = 5	 ∧ 		# = ±3										  

Los puntos de intersección son -3, 3 y 5. En la figura se observan dos regiones 
sombreadas considerando los tres puntos de intersección. El área 1 (µ") 
corresponde a la región sombreada entre las curvas g y f, y el área 2 (µ#) de la región 
sombreada entre las curvas f y g. Por lo tanto, 

µ = µ" + µ# = '[i(#) − !(#)](#

7

:

+'[!(#) − i(#)](#

W

7

= 'ç(#& − 4## − 11# + 30) − Q
#&

3
−
2##

3
− 5#Ré (#

&

*&

+'çQ
#&

3
−
2##

3
− 5#R − (#& − 4## − 11# + 30)é (#

'

&
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µ = 'Q
2#&

3
−
10##

3
− 6# + 30R(#

&

*&

+'Q−
2#&

3
+
10##

3
+ 6# − 30R(#

'

&

= è
#)

6
−
10#&

9
− 3## + 30#è

*&

&

+ è−
#)

6
+
10#&

9
+ 3## − 30#è

&

'

= âç
3)

6
−
10(3)&

9
− 3(3)# + 30(3)é

− ç
(−3))

6
−
10(−3)&

9
− 3(−3)# + 30(−3)éü

+ âç−
5)

6
+
10(5)&

9
+ 3(5)# − 30(5)é

− ç−
3)

6
+
10(3)&

9
+ 3(3)# − 30(3)éü

= Çm
93
2
n − m−

147
2
ná + Çm−

2175
54

n − m−
93
2
ná =

1136
9

	N# 

 

9. Hallar el área entre las curvas !(#) = #& + 3## + 2# y i(#) = 2## + 4#. 

Solución: 

Igualando las funciones f y g se obtienen los puntos de intersección entre ellas: 

#& + 3## + 2# = 2## + 4#									 ⇒ 									 #& + ## − 2# = 0 
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#(## + # − 2) = 0																									 ⇒ 									#(# + 2)(# − 1) = 0		 

# = 0	 ∧ 		# = −2	 ∧ 		# = 1										  

En la figura se observan dos regiones sombreadas considerando los tres puntos de 
intersección. Por lo tanto, 

µ = µ" + µ# = '[!(#) − i(#)](#

7

:

+'[i(#) − !(#)](#

W

7

= '[(#& + 3## + 2#) − (2## + 4#)](#

.

*#

+'[(2## + 4#) − (#& + 3## + 2#)](#

"

.

= '(#& + ## − 2#)(#

.

*#

+'(−#& − ## + 2#)(#

"

.

= è
#)

4
+
#&

3
− ##è

*#

.

+ è−
#)

4
−
#&

3
+ ##è

.

"

= â− ç
(−2))

4
+
(−2)&

3
− (−2)#éü + âç−

(1))

4
−
(1)&

3
+ 1#éü

=
37
12
	N# 
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3.2. Volúmenes de sólidos de revolución: método de las rebanadas, discos y 
anillos. 

En esta sección se estudia el método para hallar el volumen de un sólido generado 
al girar una región alrededor de una línea horizontal o vertical mediante integración. 
Supóngase que se tiene una curva M = !(#) en un intervalo [-, x], tal como se 
muestra en la figura. 

 
Si la curva está comprendida entre #=- y #=x y la sometemos a una rotación 
completa alrededor del eje # (es decir, 360∘ o 2Å), se obtendrá la superficie de un 
sólido en rotación, que se denomina sólido de revolución, tal como se representa 
en la figura. 

 
Sea un sólido comprendido entre las rectas verticales #=- y #=x, con una sección 
transversal en el plano que pasa por # y es perpendicular al eje # de µ(#). Si µ(#) es 
continua en el intervalo [-, x], el intervalo se puede dividir en 1 subintervalos de 
igual anchura, Δ#, y elegir un punto, #S, en cada intervalo. El volumen del sólido 
formado al girar la región limitada por la curva y el eje # entre #=- y #=x alrededor 
del eje # viene dado por, 

⁄ = lim
$→U

¤µ(#S)∆#

$

SQ"

= 'µ(#)(#

7

:

							(3.6) 
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De forma análoga, el volumen del sólido que se forma al hacer girar la región 
delimitada por la curva y el eje "M"	 entre M = ∫ e M = ( alrededor del eje "M" está 
dada por, 

⁄ = lim
$→U

¤µ(MS)∆M

$

SQ"

= 'µ(M)(M

X

W

							(3.7) 

 
Si una curva M = !(#), la forma de la sección transversal tiene forma de disco sólido 
o bien de circunferencia cuya área es µ = Å¥#, donde ¥ es el radio. El valor del 
radio de cada circunferencia o disco representará el valor de la función en ese 
punto. En consecuencia, su sección transversal perpendicular al eje de revolución 
es un disco de radio ¥=!(#), y definida por, 

µ(#) = Å[!(#)]# 

 
Entonces, el volumen del sólido que se forma al girar la región limitada por la curva 
M = !(#) y el eje # entre #=- y #=x alrededor del eje #, puede expresarse como: 
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⁄ = Å'[!(#)]#(#

7

:

							(3.8) 

 
Un proceso similar se puede seguir para calcular el volumen de un sólido con 
rotación alrededor del eje M. El volumen del sólido resultante de la revolución de la 
región delimitada por la curva #=!(M) y el eje M entre M=∫ y M=( alrededor del eje M 
está dada por, 

⁄ = Å'[!(M)]#(M

X

W

							(3.9) 

 
Finalmente, se describe el método de anillos o método de la arandela que no es más 
que el volumen del solido de revolución resultante de la región acotada por dos 
curvas !(#) y i(#) que se hace girar alrededor del eje # o del eje M. Las expresiones 
de los volúmenes de solidos de revolución estan definidas por, 

⁄ = Å'{[!(#)]# − [i(#)]#}(#

7

:

							(3.10) 
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⁄ = Å'{[!(M)]# − [i(M)]#}(M

X

W

							(3.11) 

 

A continuación, se desarrollan ejercicios de cálculos de volúmenes de solidos 
usando métodos de rebanadas (ecuaciones 3.6 y 3.7) y del disco (ecuaciones 3.8 y 
3.9). 

1. Calcular el volumen del solido que se muestra en la figura utilizando el método 
de las rebanadas si se proporciona una sección transversal cuya forma es un 
triángulo equilátero a un diámetro de una base circular cuyo radio es 4 
unidades. 

 
Solución: 

Primero analizamos la base del solido que tiene una base circular (véase la figura 
izquierda), y una sección transversal de forma de un triángulo equilátero (véase la 
figura derecha). 

 
Obtenemos la ecuación de la curva a partir de la ecuación de la circunferencia 
definida por: 

## + M# = 4# 																⇒ 														 ## + M# = 16 

M = G16 − ## 
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Después, se obtiene el área de la sección transversal (método de la rebanada) para 
calcular el volumen usando la expresión 3.6. 

µ(#) = x ∙ ℎ = M ∙ G(2M)# − (M)# = M ∙ √3M = √3M# = √3FG16 − ##H
#
 

µ(#) = √3(16 − ##) 

Finalmente, 

⁄ = 'µ(#)(#

7

:

= '√3(16 − ##)(#

)

*)

= √3 '(16 − ##)(#

)

*)

= √3 Ä16# −
1
3
#&Ä

*)

)

 

⁄ = √3 Çm16(4) −
1
3
(4)&n − m16(−4) −

1
3
(−4)&ná 

⁄ =
256
3
√3	N& 

 

2. Usando el método del disco, obtener el volumen del solido de revolución que 
se forma al girar alrededor del eje "#" la región acotada por las curvas M = √#, 
M = 0 y # = 4. 

Solución: 

Antes de utilizar la expresión 3.8 se bosqueja la gráfica de la curva M = √# que ha 
sido rotada alrededor del eje # (véase la figura).  

 
Por lo tanto, 
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⁄ = Å'ë√#í
#
(#

)

.

= Å'#(#

)

.

= Å Ä
1
2
##Ä

.

)

= Å Çm
1
2
(4)#n − [0]á 

⁄ = 8Å	N& 

 
3. Utilizar el método del disco, para determinar el volumen del solido de 

revolución que se forma al girar alrededor del eje "#" la región acotada por las 
curvas M = 9 − ##, M = 0. 

Solución: 

Antes de utilizar la ecuación 3.8 se bosqueja la gráfica de la curva M = 9 − ## 
considerando que M = 0 se establecen las rectas # = −3 y # = 3, y que ha sido 
rotada alrededor del eje #, tal como se muestra en la figura.   

 
Por lo tanto, 

⁄ = Å '(9 − ##)#(#

&

*&

= Å '(81 − 18## + #))(#

&

*&

 

 

Por simetría, 
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⁄ = 2Å'(81 − 18## + #))(#

&

.

= 2Å Ä81# − 6#& +
1
5
#'Ä

.

&

 

⁄ = 2Å Çm81(3) − 6(3)& +
1
5
(3)'n − [0]á 

⁄ =
1296
5

Å	N& 

 

4. Utilizar el método del disco, para determinar el volumen del solido de 
revolución que se forma al girar alrededor del eje "M" la región acotada por las 
curvas M = ## + 1, # = 0 M = 5. 

Solución: 

En este ejercicio se utiliza la expresión 3.9 para obtener el volumen del solido de 
revolución generado al rotar con respecto al eje M (véase la figura). Por lo tanto, la 
curva M = ## + 1 debe expresarse en función de M: 

## = M − 1																 ⇒ 														# = GM − 1 

# = !(M) 																			⇒ 														!(M) = GM − 1 

 

Ahora se bosqueja la gráfica de la curva M = ## + 1 considerando que si # = 0 se 
establece la recta M = 1 y se sabe que M = 5, y que ha sido rotada alrededor del eje 
M, tal como se muestra en la figura. 

 
Por lo tanto, 
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⁄ = Å'[!(M)]#(M

X

W

= Å'IGM − 1J
#
(M

'

"

= Å'(M − 1)(M

'

"

= Å Ä
1
2
M# − MÄ

"

'

 

⁄ = Å Çm
1
2
(5)# − 5n − m

1
2
(1)# − 1ná = 8Å	N& 

 

5. Utilizar el método del disco, para determinar el volumen del solido de 
revolución que se forma al girar alrededor del eje "#" la región acotada por las 
curvas M = 4 − ##, M = 1 − 0.25##. 

Solución: 

Sean, 

!(#) = M = 4 − ##		M			i(#) = M = 1 −
1
4
## 

Igualamos !(#) con i(#): 

4 − ## = 1 −
1
4
## 																⇒ 														16 − 4## = 4 − ## 

12 = 3## 																																⇒ 																# = ±2 

Los puntos de intersección entre las dos curvas son -2 y 2, cuyos valores serán los 
intervalos de la integral de volumen (véase la ecuación 3.10) mediante el método 
del disco. La figura muestra la gráfica en 2D de las curvas !(#) y i(#) y la grafica 3D 
del solido de revolución alrededor del eje x de la región acotada por las curvas en 
mención. 
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⁄ = Å'{[!(#)]# − [i(#)]#}(#

7

:

= Å ' ç(4 − ##)# − ?1 −
1
4
##A

#

é (#

#

*#

 

⁄ = Å ' m(16 − 8## + #)) − ?1 −
1
2
## +

1
16
#)An 	(#

#

*#

 

Por simetría, 

⁄ = 2Å'?15 −
15
2
## +

15
16
#)A (#

#

.

= 2Å Ä15# −
5
2
#& +

3
16
#'Ä

.

#

 

⁄ = 2Å Çm15(2) −
5
2
(2)& +

3
16
(2)'n − [0]á = 2Å{30 − 20 + 6} 

⁄ = 32Å	N& 

 

6. Usando el método de la arandela, calcular el volumen del sólido obtenido al 
rotar la región bajo la curva M = 9 − ## para 0 ≤ # ≤ 3 alrededor del eje 
vertical # = −2. 

Solución: 

En este caso, el eje de rotación es la línea vertical # = −2, en consecuencia, la 
sección transversal perpendicular a # = −2 tendrá una anchura (M, esto significa 
que tanto la función como los límites de integración estan en función de M. Por lo 
tanto, 

M = 9 − ## 																⇒ 														 ## = 9 − M																	 ⇒ 														# = G9 − M 

Otro punto importante es considerar que al rotar verticalmente en la línea # = −2 
el solido se generado internamente tiene un hueco, por lo tanto, 

!(M) = G9 − M + 2														i(M) = 2 

Finalmente, 

⁄ = Å'{[!(M)]# − [i(M)]#}(M

X

W

= Å' tIG9 − M + 2J
#
− (2)#u (M

-

.

 

⁄ = Å'ë(9 − M) + 4G9 − M + 4 − 4í	(M

-

.

= Å'I9 − M + 4G9 − MJ	(M

-

.
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⁄ = Å Ä9M −
1
2
M# −

8
3
(9 − M)

#
&Ä
.

-

 

⁄ = Å Çm9(9) −
1
2
(9)# −

8
3
(9 − 9)

#
&n − m−

8
3
(9 − 0)

#
&ná 

⁄ = Å m?81 −
81
2
A − (−72)n = Å ?

81
2
+ 72A 

⁄ =
225
2
Å	N& 

 
 

7. Usando el método de la arandela, calcular el volumen del sólido obtenido al 
rotar la región entre las curvas M = sec #, M = 1, # = −1, # = 1 alrededor del 
eje #. 

Solución: 

En este caso, se tiene una función trigonométrica sec # (véase la figura) que 
interseca con las rectas M = 1, # = −1, # = 1  y que al rotar con respecto al eje # 
se obtiene el sólido de revolución que se muestra en la figura.  En consecuencia, la 
sección transversal es una arandela con radio interior (M = i(#) = 1) y radio 
exterior (M = !(#) = sec #). Por lo tanto, 

⁄ = Å'{[!(#)]# − [i(#)]#}(#

7

:

= Å '[(sec #)# − (1)#](#

"

*"

 

⁄ = Å '(sec# # − 1)	(#

"

*"
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Por simetría, 

⁄ = 2Å'(sec# # − 1)	(#

"

.

= 2Å|tan # − #|.
" = 2Å{[tan(1) − 1] − [(tan(0) − 0]} 

 
⁄ = 2Å(tan 1 − 1) = 3.502	N& 
 

 
 

8. Usando el método de la arandela, determinar el volumen del sólido obtenido 
al rotar la región entre las curvas M# = #, # = 2M alrededor del eje M. 

Solución: 

Usando la expresión 3.11 para el método de arandelas alrededor del eje M, las dos 
curvas !(M) = 2M y i(M) = M# (véase la figura) corresponden al radio exterior e 
interior respectivamente. Por lo tanto, se procede a calcular las intersecciones de 
ambas curvas, 

!(M) = i(M) 																	⇒ 														2M = M# 																	⇒ 														 M# − 2M = 0 

M(M − 2) = 0 																⇒ 														M = 0	 ∧ 	M = 2 

 

En este caso, los puntos que intersecan las curvas !(M) y i(M) son M = 0	 ∧ 	M = 2.  
El sólido de revolución generado alrededor del eje M se muestra en la figura, es decir, 
que el volumen del sólido es, 
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⁄ = Å'{[!(M)]# − [i(M)]#}(M

X

W

= Å'[(2M)# − (M#)#](M

#

.

 

⁄ = Å'(4M# − M))(M

#

.

= Å Ä
4
3
M& −

1
5
M'Ä

.

#

 

⁄ = Å Çm
4
3
(2)& −

1
5
(2)'n − 0á = Å ?

32
3
−
32
5
A 

⁄ =
64
15
Å	N& 

 

3.3. Sólidos de revolución: método de capas cilíndricas. 

En algunos casos puede resultar difícil o imposible determinar el volumen de un 
sólido de revolución (véase la figura 3D) por el método del disco o de la arandela. 
En este caso, con el método de la arandela, la sección transversal del sólido de 
revolución es la misma que la de la arandela (véase la figura). No obstante, para 
aplicar este método es necesario transformar la función M = 3## − #& (véase la 
figura 2D) en la forma # = !(M), tarea nada sencilla. 

 

En este tipo de situaciones, el método para calcular el volumen se denomina 
método de los cascarones cilíndricos. Con este método se considera el sólido como 
un conjunto de cascarones cilíndricos concéntricos que circunscriben el eje de 
revolución. Utilizando los métodos del disco o de la arandela, la integración se 
efectúa a lo largo del eje de coordenadas paralelo a los ejes de revolución. En 
cambio, con el método de los cascarones la integración se efectúa a lo largo del eje 
de coordenadas perpendicular al eje de revolución. Al igual que antes, se considera 
una región acotada por la función M = !(#) en el eje #, y las rectas verticales # = - 
y # = x en la que 0 ≤ - < x 
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Así, mediante la integral se obtiene el volumen del sólido que se obtiene al girar la 
región alrededor del eje M. 

⁄ = 2Å'#!(#)(#

7

:

																								(3.12) 

Donde 2Å# representa el perímetro del cascarón o coraza elemental, la función 
!(#) corresponde a la altura del cascarón y (# a su espesor. 

En el caso de que dos curvas M = !(#) e M = i(#) acoten la región en un intervalo 
[-, x], donde 0 ≤ i(#) ≤ !(#) se obtendrá el volumen del sólido al girar la región 
alrededor del eje M, que se expresará mediante la integral de la diferencia de dos 
funciones, es decir,  

⁄ = 2Å'#[!(#) − i(#)](#

7

:

										(3.13) 

Estas fórmulas son fácilmente modificables si el sólido se forma girando alrededor 
del eje #. Así, las dos ecuaciones anteriores se convierten en: 

a. Si la región está acotada por una curva y el eje M, 

⁄ = 2Å'M!(M)(M

X

W

																										(3.14) 

b. Si la región está acotada por dos curvas, 

⁄ = 2Å'M[!(M) − i(M)](M

X

W

										(3.15) 
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Ahora, supóngase una región acotada entre la curva M = !(#) y el eje # en el 
intervalo [-, x]	y que gira alrededor de la recta vertical # = ℎ. Para este caso, se 
aplican las siguientes expresiones para obtener el volumen del sólido de revolución, 

⁄ =

⎩
⎪⎪
⎨

⎪⎪
⎧
2Å'(# − ℎ)!(#)(#

7

:

, si	ℎ ≤ - < x

2Å'(ℎ − #)!(#)(#

7

:

, si	- < x ≤ ℎ

.																				(3.16) 

De forma similar, si la región acotada por una curva # = !(M) y el eje M en el 
intervalo [∫, (] gira alrededor de la recta horizontal M = •, se obtiene un sólido 
cuyo volumen viene dado por, 

⁄ =

⎩
⎪⎪
⎨

⎪⎪
⎧
2Å'(M −•)!(M)(M

X

W

, si	• ≤ ∫ < (

2Å'(• − M)!(M)(M

X

W

, si	∫ < ( ≤ ℎ

.																		(3.17) 

A continuación, se realiza la resolución de problemas de solidos de revolución 
mediante el método de los cascarones cilíndricos.  

 

1. Usando el método de las capas cilíndricas, calcular el volumen del sólido 
obtenido al rotar la región bajo la curva M = 3## − #& en el intervalo [0, 3] 
alrededor del eje M. 

Solución: 

Este ejercicio se aplica el método de capas cilíndricas para determinar el volumen al 
rotar la curva !(#) = 3## − #& alrededor del eje M, y está definida por,  

⁄ = 2Å'#!(#)(#

7

:

= 2Å'#(3## − #&)(#

&

.

= 2Å'(3#& − #))(#

&

.

 

⁄ = 2Å Ä
3
4
#) −

1
5
#'Ä

.

&

= 2Å Çm
3
4
(3)) −

1
5
(3)'n − [0]á 

⁄ = 2Å m
243
4

−
243
5
n = 2Å m

1215 − 972
20

n 

⁄ =
243
10

Å	N& 
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2. Usando el método de las capas cilíndricas, calcular el volumen del sólido 
obtenido de la región acotada por las curvas # = M# − 2 y # = 6 − M# al rotar 
alrededor del (a) eje #, y (b) la recta # = 2. 

Solución: 

(a) la figura muestra la región acotada por las curvas i(M) = # = M# − 2 y !(M) =
# = 6 − M# que permite generar el sólido de revolución alrededor del eje M. Para 
este inciso se aplica la expresión 3.15 del método de capas cilíndricas para 
determinar el volumen, es decir,   

⁄ = 2Å'M[i(M) − !(M)](M

X

W

= 2Å'M[(6 − M#) − (M# − 2)](M

#

.

 

⁄ = 2Å'M(8 − 2M#)(M

#

.

= 2Å'(8M − 2M&)(M

#

.

= 2Å Ä4M# −
1
2
M)Ä

.

#

 

⁄ = 2Å m4(2)# −
1
2
(2))n = 2Å[16 − 8] 

⁄ = 16Å	N& 
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(b) en este inciso se aplica el método de capas cilíndricas para determinar el 
volumen al rotar en la recta # = 2. La figura muestra el sólido de revolución cuando 
la rotación es alrededor de la recta # = 2, entonces el radio medio es (# − 2) y la 
altura es 2i(#) en el intervalo 2 ≤ # ≤ 6 por lo tanto, el volumen se define como,  

⁄ = 2Å'(# − 2)[2i(#)](#

7

:

= 2Å'(# − 2)I2√6 − #J(#

(

#

 

⁄ = 4Å'(# − 2)√6 − #(#

(

#

 

Se aplica cambio de variables, es decir, N = √6 − # 

N# = 6 − #																 ⇒ 												# = 6 − N# 												⇒ 										(# = −2N(N 

Finalmente,  

⁄ = 4Å'(6 − N# − 2)N(−2N(N)

(

#

= 4Å'2(N# − 4)N#(N

(

#

= 8Å'(N) − 4N#)(N

(

#

 

⁄ = 8Å çÄ
1
5
N' −

4
3
N&Ä

#

(

é = 8Å Ä
1
5
I√6 − #J

'
−
4
3
I√6 − #J

&
Ä
#

(

 

⁄ = 8Å Çm
1
5
I√0J

'
−
4
3
I√0J

&
−
1
5
I√4J

'
+
4
3
I√4J

&
ná = 8Å Ç−

32
5
+
32
3
á 

⁄ =
512
15

Å	N& 

 
 

3. Utilice el método de las capas cilíndricas para calcular el volumen del sólido de 
revolución alrededor del eje M que se obtiene de la región acotada por la curva 
M = 3# − #&, el eje # y la recta # = 1. 
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Solución: 

Aplicando el método de capas cilíndricas para determinar el volumen del solido de 
revolución al rotar en el eje M, es decir,  

⁄ = 2Å'#!(#)(#

X

W

= 2Å'#(3# − #&)(#

"

.

= 2Å'(3## − #))(#

"

.

 

⁄ = 2Å Ä#& −
1
5
#'Ä

.

"

= 2Å m(1)& −
1
5
(1)'n = 2Å m1 −

1
5
n 

⁄ =
8
5
Å	N& 

 

 

4. Utilice el método de las capas cilíndricas para encontrar el volumen del sólido 
de revolución que se forma al girar la región acotada por las curvas M = ##, 
M = 9 alrededor del eje #. 

Solución: 

Al rotar alrededor del eje # el volumen se calcula en función de M, es decir, que: 

M = ## 									⇒ 									# = ±GM 

Si M = 9, entonces: # = √9 = ±3, esto indica que la gráfica está en el intervalo 
−3 ≤ # ≤ 3. La región acotada entre las curvas M = ## e M = 9 se muestra en la 
figura, y también se observa el sólido de revolución general alrededor del eje #. 
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Entonces el radio medio es M y la altura es !(M)ëGM − I−GMJí = 2GM en el 
intervalo de −3 ≤ # ≤ 3 por lo tanto, el volumen se define como, 

⁄ = 2Å'M!(M)(#

X

W

= 2Å'MI2GMJ(M

-

.

= 4Å'M
&
#(M

-

.

 

⁄ = 4Å Ä
2
5
#
'
#Ä
.

-

= 4Å m
2
5
(9)

'
#n = 4Å m

486
5
n 

⁄ =
1944
5

Å	N& 

 

 

5. Utilice el método de las capas cilíndricas para calcular el volumen del sólido de 
revolución que se forma al girar la región acotada por las curvas M = √#

! + 1, 
M = 1 − #, # = 1 alrededor de la recta # = 1. 

Solución: 

Al rotar alrededor de la recta # = 1 (verticalmente) el volumen se calcula en función 
de #. La figura muestra el sólido de revolución cuando la rotación es alrededor de la 
recta # = 1, entonces el radio medio se convierte en (1 − #) y la altura también 
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cambia, es decir, [!(#) − i(#)] en el intervalo de 0 ≤ # ≤ 1 por lo tanto, el 
volumen se define como, 

⁄ = 2Å'(1 − #)[!(#) − i(#)](#

X

W

= 2Å'(1 − #) m#
"
& + 1 − (1 − #)n (#

"

.

 

⁄ = 2Å'(1 − #) ?#
"
& + #A 	(#

"

.

= 2Å'?#
"
& + # − #

)
& − ##A 	(#

"

.

 

⁄ = 2Å Ä
3
4
#
)
& +

1
2
## −

3
7
#
,
& −

1
3
#&Ä

.

"

 

⁄ = 2Å m
3
4
(1)

)
& +

1
2
(1)# −

3
7
(1)

,
& −

1
3
(1)&n = 2Å m

3
4
+
1
2
−
3
7
−
1
3
n 

⁄ = 2Å m
63 + 42 − 36 − 28

84
n 

⁄ =
41
42
Å	N& 

 

 

6. Utilice el método de las capas cilíndricas para calcular el volumen del sólido de 
revolución que se forma al girar la región acotada por las curvas M = ## − 2, 
M = 2 − ##, segundo y tercer cuadrante alrededor del eje M. 

Solución: 
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Al rotar alrededor del eje M el volumen se calcula en función de #. La figura muestra 
la región acotada por las curvas !(#) = ## − 2	y i(#) = 2 − ## entre el segundo y 
tercer cuadrante. El sólido de revolución cuando la rotación es alrededor del eje M, 
el radio medio se convierte en (−#) y la altura también cambia, es decir, 
[i(#) − !(#)] en el intervalo de −√2 ≤ # ≤ 0 por lo tanto, el volumen se define 
como, 

⁄ = 2Å'(−#)[i(#) − !(#)](#

7

:

= 2Å '(−#)[2 − ## − (## − 2)](#

.

*√#

 

⁄ = 2Å '(−#)(4 − 2##)(#

.

*√#

= 2Å '(2#& − 4#)(#

.

*√#

= 2Å Ä
1
2
#) − 2##Ä

*√#

.

 

⁄ = 2Å ç[0] − m
1
2
I−√2J

)
− 2I−√2J

#
né = 2Å(−2 + 4) 

⁄ = 4Å	N& 

 

 

7. Utilice el método de las capas cilíndricas para hallar el volumen del sólido de 
revolución formado al girar la región acotada por las curvas !(#) = ## − 4#, 
i(#) = 4# − ##, alrededor de la recta # = −1. 

Solución: 

Al rotar alrededor del eje M el volumen se calcula en función de #. La figura muestra 
la región acotada por las curvas !(#) = ## − 4#	y i(#) = 4# − ## en el intervalo 
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[0, 4]. El sólido de revolución cuando la rotación es alrededor del eje M, el radio 
medio se convierte en (# + 1) y la altura también cambia, es decir, [i(#) − !(#)] 
en el intervalo de 0 ≤ # ≤ 4 por lo tanto, el volumen se define como, 

⁄ = 2Å'(# + 1)[i(#) − !(#)](#

7

:

= 2Å'(# + 1)[4# − ## − (## − 4#)](#

)

.

 

⁄ = 2Å'(# + 1)(8# − 2##)(#

)

.

= 2Å'(8# + 6## − 2#&)(#

)

.

 

⁄ = 2Å Ä4## + 2#& −
1
2
#)Ä

.

)

= 2Å çm4(4)# + 2(4)& −
1
2
(4))n − [0]é 

⁄ = 2Å(64 + 128 − 128) 

⁄ = 128Å	N& 

 

 

8. Utilice el método de las capas cilíndricas para obtener el volumen del sólido de 
revolución formado al girar la región acotada por las curvas !(#) = √# − 2, 
i(#) = # − 4, M = 1 alrededor del eje #. 

Solución: 

Al rotar alrededor del eje # el volumen se calcula en función de M. La figura muestra 
la región acotada por las curvas !(#) = M = √# − 2, i(#) = M = # − 4 y M = 1 en 
el intervalo 1 ≤ M ≤ 2. Expresamos las curvas en función de M,  
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M = √# − 2 												⇒ 								 M# = # − 2												 ⇒ 											# = !(M) = M# + 2 

M = # − 4																 ⇒ 							# = i(M) = M + 4 

El sólido de revolución cuando la rotación es alrededor del eje M, el radio medio se 
convierte en (M) y la altura también cambia, es decir, [i(M) − !(M)] en el intervalo 
de 1 ≤ M ≤ 2 por lo tanto, el volumen se define como 

⁄ = 2Å'M[i(M) − !(M)](M

X

W

= 2Å'M[(M + 4) − (M# + 2)](M

#

"

 

⁄ = 2Å'M(2 + M − M#)(M

#

"

= 2Å'(2M + M# − M&)(M

#

"

 

⁄ = 2Å ÄM# +
1
3
M& −

1
4
M)Ä

"

#

= 2Å Çm2# +
1
3
⋅ 2& −

1
4
⋅ 2)n − m1# +

1
3
⋅ 1& −

1
4
⋅ 1)ná 

⁄ = 2Å Çm4 +
8
3
− 4n − m1 +

1
3
−
1
4
ná = 2Å Ç

8
3
−
13
12
á 

⁄ =
19
6
Å	N& 

 

 

9. Utilice el método de las capas cilíndricas para obtener el volumen del sólido de 
revolución formado al girar la región acotada por las curvas M = sin ##, # = 0, 
M = 1 alrededor del eje M. 

Solución: 
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En este ejercicio trata de una función trigonométrica que se interseca con la curva 
M = 1 para posteriormente rotarlas alrededor del eje M. Para rotaciones sobre el eje 
M se utiliza el volumen del solido de revolución en función de #. La figura muestra el 
plano 2D y 3D (se genera el sólido de revolución). Se procede a obtener el valor de 
intersección entre las curvas !(#) = M = sin ## y i(#) = M = 1, es decir, 

1 = sin ## 										⇒ 									 ## = sin*"(1) 											⇒ 								 ## =
Å
2

 

En consecuencia, los extremos superior e inferior de la integral del volumen del 
solido de revolución son: 

0 ≤ # ≤	s
Å
2

 

 

Por lo tanto, 

⁄ = 2Å'#[i(#) − !(#)](#

7

:

= 2Å ' #[1 − (sin ##)](#

]E/#

.

 

⁄ = 2Å ò ' #(#

]E/#

.

− ' # sin ## (#

]E/#

.

ô 

En la segunda integral # sin ## se aplica un cambio de variable, es decir, 

N = ## 									⇒ 								(N = 2#(#							 ⇒ 						#(# =
1
2
(N 

⁄ = 2Å«Ä
1
2
##Ä

.

]E/#

−
1
2
' sin N (N

]E/#

.

· = 2Å ƒÄ
1
2
##Ä

.

]E/#

+ Ä
1
2
cos NÄ

.

]E/#

‚ 
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⁄ = 2Å ƒŒ
1
2
Qs

Å
2
R
#

− 0œ + Œ
1
2
cos Qs

Å
2
R
#

−
1
2
cos 0#œ‚ 

⁄ = 2Å Çm
1
4
Ån + m

1
2
(0) −

1
2
(1)ná = 2Å Ç

1
4
Å −

1
2
á = 2Å ?

Å − 2
4

A 

⁄ =
Å# − 2Å

2
	N& 

 

3.4. Longitud de arco. 

Hasta ahora, la función !(#) sólo era integrable o, a lo sumo, continua. No obstante, 
en el caso de la longitud de arco, se requiere que !(#) sea más rigurosa.  Es decir, 
que !(#) tiene que ser diferenciable y, sobre todo, su derivada, !!(#), tendrá que 
ser continua. Este tipo de funciones, que presentan derivadas continuas, reciben el 
nombre de funciones suavizadas. 

Sea !(#) una función suavizada y definida sobre [-, x]. El objetivo es obtener la 
longitud de la curva entre el punto I-, !(-)J y Ix, !(x)J.  Para aproximar la longitud 
de la curva, primero se utilizan segmentos de recta. Sea V = {#S}, para Ñ =
0, 1, 2, … , 1, una división regular de [-, x]. Entonces, para Ñ = 1, 2, … , 1, se 
construye un segmento de recta desde el punto I#S*", !(#S*")J hasta el punto 
I#S , !(#S)J. Aunque puede parecer lógico utilizar segmentos de línea horizontales o 
verticales, nos interesa que los segmentos de línea se aproximen lo más posible a la 
curva. La figura describe esta construcción para n=12. 
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Para determinar la longitud de cada segmento de la recta, se tiene en cuenta la 
variación de la distancia vertical y la variación de la distancia horizontal en cada 
intervalo. Al utilizar una distribución regular, las variaciones entre las distancias 
horizontales durante cada intervalo dependen de ∆#. No obstante, la variación 
vertical cambia de un intervalo a otro, por lo tanto, se utiliza ∆MS = !(#S) − !(#S*") 
como representación del cambio vertical en el intervalo [#S*", #S], tal como se 
muestra en la figura. Véase que algunos (o todos) valores de ∆MS en ocasiones son 
negativos. 

 
De acuerdo con el teorema de Pitágoras, en este caso la longitud del segmento de 
línea es ∆! = G(∆#)# + (∆MS)#. Asimismo, puede escribirse como, 

∆! = ∆#p1 + ?
∆MS
∆#
A
#

 

Entonces, en base al Teorema del Valor Medio, se tiene un punto #S∗ ∈ [#S*", #S] tal 
que !′	(#S∗) = ∆MS/∆#. Por tanto, la longitud del segmento de línea resulta ser  

∆! = ∆#s1 + [!′(#S
∗)]# 

Al añadir todas las longitudes de los segmentos de línea, se obtiene, la longitud de 
arco definida por, 

÷ = 's1 + [!′(#S
∗)]#(#

7

:

 

Longitud del arco para ‰ = Â(e) 

Sea !(#) como una función suavizada en el intervalo [-, x].  Por lo tanto, la longitud 
de arco de la porción de la gráfica de !(#) desde el punto I-, !(-)J hasta Ix, !(x)J 
está definida por, 
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÷ = 'G1 + [!′(#)]#(#

7

:

													(3.18) 

Longitud del arco para e = Â(‰) 

Sea !(M) como una función suavizada en el intervalo [∫, (].  Por lo tanto, la longitud 
de arco de la porción de la gráfica de !(M) desde el punto I∫, !(∫)J hasta I(, !(()J 
está definida por, 

÷ = 'G1 + [!′(M)]#(M

X

W

													(3.19) 

A continuación, se presenta la resolución de ejercicios para calcular la longitud de 
arco de una curva. 

1. Determinar la longitud de arco de la curva M = #
&
(## + 1)&/# en el intervalo 

[1, 4]. 

Solución: 

La figura muestra la gráfica obtenida de la curva M = !(#) =
#
&
(## + 1)&/# y que es continua en el intervalo [1, 4]. De 

acuerdo con la expresión 3.18 primero hay que calcular la 
derivada de !!(#) dada por, 

!!(#) =
2
3
∙
3
2
(## + 1)"/#(2#) = 2#G## + 1 

 

Por lo tanto, se evalúa la expresión 3.18: 

÷ = 'G1 + [!!(#)]#(#

7

:

= 's1 + t2#G## + 1u
#
(#

)

"

 

÷ = 'G1 + 4##(## + 1)(#

)

"

= 'G4#) + 4## + 1(#

)

"

 

÷ = 'G(2## + 1)#(#

)

"

= '(2## + 1)(#

)

"

= Ä
2
3
#& + #Ä

"

)

 

÷ = m
2
3
(4)& + 4n − m

2
3
(1)& + 1n =

128
3

+ 4 −
2
3
− 1 
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÷ = 45 

 

2. Determinar la longitud de arco de la curva (M + 1)# = 4(# + 1)& en el 
intervalo [−1, 0]. 

Solución: 

La curva se expresa de manera explícita, es decir,  M =
!(#) = 2(# + 1)&/# − 1 y es continua en el intervalo 
[−1, 0], tal como se muestra en la figura. Después se 
deriva !(#) y es, 

!!(#) = 2 ∙
3
2
(# + 1)"/# = 3(# + 1)"/# = 3√# + 1 

 

Esta derivada !′(#) se reemplaza en la expresión 3.18: 

÷ = 'G1 + [!!(#)]#(#

.

*"

= 's1 + ë3√# + 1í
#
(#

.

*"

= 'G1 + 9(# + 1)(#

.

*"

 

÷ = '√9# + 10(#

.

*"

= '(9# + 10)"/#(#

.

*"

 

Aplicamos cambio de variable:  

, = 9# + 10								 ⇒ 						(, = 9(#								 ⇒ 							(# =
1
9
(, 

÷ = ',"/# ∙
1
9
(,

.

*"

=
1
9
',"/#(,

.

*"

= Ä
1
9
∙
2
3
,&/#Ä

*"

.

= Ä
2
27
I√9# + 10J

&
Ä
*"

.

 

÷ = m
2
27
FG9(0) + 10H

&
n − m

2
27
FG9(−1) + 10H

&
n =

2
27
I√10J

&
−
2
27
(1) 

÷ = 2.27 

 

3. Determinar la longitud de arco de la curva M = "
&
#&/# − #"/# en el intervalo 

[1, 4]. 

Solución: 
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En la figura se observa la gráfica de la 
curva M = !(#) = "

&
#&/# − #"/# y que 

es continua en el intervalo [1, 4].  A 
continuación, se obtiene la derivada de 
!(#), 

!′(#) =
1
3
∙
3
2
#"/# −

1
2
#*"/# 

!′(#) =
1
2
#"/# −

1
2#"/#

 

!′(#) =
#"/# ∙ #"/# 	− 1

2#"/#
=
# − 1

2√#
	 

 

Esta derivada !′(#) se reemplaza en la expresión 3.18: 

÷ = 'G1 + [!!(#)]#(#

)

"

= 'p1 + m
# − 1

2√#
n
#

(#

)

"

= 'p1 +
(# − 1)#

4#
(#

)

"

 

÷ = 'p
4# + ## − 2# + 1

4#
(#

)

"

= 'p
## + 2# + 1

4#
(#

)

"

= 'p
(# + 1)#

4#
(#

)

"

 

÷ = '
# + 1

2√#
(#

)

"

= '
#

2#"/#
(#

)

"

+'
1

2#"/#
(#

)

"

=
1
2
'#"/#(#

)

"

+
1
2
'#*"/#(#

)

"

 

÷ = Ä
1
2
∙
2
3
#&/# +

1
2
∙ 2#"/#Ä

"

)

= Ä
1
3
I√#J

&
+ √#Ä

"

)

 

÷ = m
1
3
I√4J

&
+√4n − m

1
3
I√1J

&
+ √1n =

8
3
+ 2 −

1
3
− 1 

÷ =
10
3

 

 

4. Determinar la longitud de arco de la curva 6#M = M) + 3 en el intervalo 1 ≤
M ≤ 2. 

Solución: 

La curva 6#M = M) + 3 no se expresa en términos de #, ya que hacerlo no es tan 
sencillo por lo que se va a expresar en términos de M, por lo tanto, 
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# =
1
6
M)

M
	+

3
6M

=
1
6
M& +

1
2M
										 

!(M) = # =
1
6
M& +

1
2M

 

 

La función !(M) es continua en el intervalo 
1 ≤ M ≤ 2, y después se deriva, 

!!(M) =
1
6
∙ 3M# −

1
2M#

=
1
2
M# −

1
2
M*# 

!!(M) =
1
2
(M# − M*#) 

 

Finalmente, se reemplaza en la expresión 3.19, 

÷ = 'G1 + [!!(M)]#(M

X

W

= 'p1 + m
1
2
I(M# − M*#)Jn

`#

(M

#

"

 

÷ = 'p1 +
1
4
(M# − M*#)#(M

#

"

= 'p1 +
1
4
(M) − 2 + M*))(M

#

"

 

÷ = 'p1 +
1
4
M) −

1
2
−
1
4
M*)(M

#

"

= 'p
1
4
M) +

1
2
+
1
4
M*)(M

#

"

 

÷ = 'p
1
4
(M# + M*#)#	(M

#

"

= '
1
2
(M# + M*#)	(M

#

"

= Ä
1
2
∙
1
3
M& +

1
2
∙
1
−1

M*"Ä
"

#

 

÷ = Ä
1
6
M& −

1
2M
Ä
"

#

= m
1
6
(2)& −

1
2(2)

n − m
1
6
(1)' −

1
2(1)

n =
4
3
−
1
4
−
1
6
+
1
2

 

÷ =
17
12

 

 

5. Determinar la longitud de arco de la curva # = "
&GM(M − 3) en el intervalo 1 ≤

M ≤ 9. 

Solución: 
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La figura muestra la curva !(M) = # =
"
&
IGMJ

&
−GM y que es continua en el 

intervalo 1 ≤ M ≤ 9. Después se procede a 
calcular la derivada de !(M), 

!!(M) =
1
3
∙
3
2
GM −

1

2GM
=
GM
2
−

1

2GM
 

 

Finalmente, se reemplaza en la expresión 
3.19, 

÷ = 'G1 + [!!(M)]#(M

X

W

= 'Ê1 + Q
GM
2
−

1

2GM
R

`#

(M

-

"

 

÷ = 'Ê1 + Q
GM
2
R

#

− 2Q
GM
2
RQ

1

2GM
R + Q

1

2GM
R
#

(M

-

"

 

÷ = 'p1 +
M
4
−
1
2
+
1
4M
(M

-

"

= 'p
M
4
+
1
2
+
1
4M
(M

-

"

 

÷ = 'ÊQ
GM
2
+

1

2GM
R

`#

(M

-

"

= 'Q
M"/#

2
+

1
2M"/#

R(M

-

"

 

÷ =
1
2
'M

"
#(M

-

"

+
1
2
'M*

"
#(M

-

"

= Ä
1
2
∙
2
3
M
&
# +

1
2
∙ 2M

"
#Ä
"

-

= Ä
1
3
IGMJ

&
+GMÄ

"

-

 

÷ = m
1
3
I√9J

&
+√9n − m

1
3
I√1J

&
+ √1n = 9 + 3 −

1
3
− 1 

÷ =
32
3

 

 

6. Determinar la longitud de arco de la curva M = ln(cos #) en el intervalo 0 ≤
# ≤ Å/2. 

Solución: 
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La figura muestra la curva !(#) = M = ln(cos #) y que 
es continua en el intervalo 0 ≤ # ≤ Å/3. A partir de la 
curva se obtiene la derivada !!(#), 

!!(#) =
1

cos #
(− sin #) = − tan # 

 

Finalmente, se reemplaza en la expresión 3.18, 

÷ = 'G1 + [!!(#)]#(#

7

:

= ' G1 + (− tan #)#(#

E/&

.

 

÷ = ' G1 + tan# # (#

E/&

.

= ' Gsec# # (#

E/&

.

= ' sec # (#

E/&

.

 

÷ = |ln(sec # + tan #)|.

E
& = tln Fsec

Å
3
+ tan

Å
3
Hu − [ln(sec 0 + tan0)] 

÷ = lnI2 + √3J − ln(1 + 0) 

÷ = lnI2 + √3J 

 

7. Determinar la longitud de arco de la curva ##/& + M#/& = 1. 

Solución: 

La curva dada esta expresada en forma implícita, se 
requiere ser expresada explícitamente, es decir, 
M = I1 − ##/&J

&/#. La figura muestra la curva 

!(#) = M = I1 − ##/&J
&/#. A partir de la curva se 

obtiene la derivada !!(#), 

!!(#) =
3
2
I1 − ##/&J

"/#
∙ ?−

2
3
#*"/&A 

!!(#) = −#*"/&I1 − ##/&J
"/# 

 

El ejercicio no nos indica el intervalo de valores de continuidad. Para calcular la 
longitud de arco de la curva !(#), obsérvese la figura que tiene 4 tramos de longitud 
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idénticos. Por lo tanto, se analiza un tramo de !(#) en el intervalo [0, 1] y por 
simetría la expresión 3.18 se define como,  

÷ = 4'G1 + [!!(#)]#(#

7

:

= 4'G1 + (−#*"/&(1 − ##/&)"/#)#(#

"

.

 

÷ = 4'G1 + #*#/&(1 − ##/&)(#

"

.

= 4'G1 + #*#/& − 1(#

"

.

= 4'G#*#/&(#

"

.

 

÷ = 4'#*"/&(#

"

.

= 4 Ä
3
2
##/&Ä

.

"

= 4Çm
3
2
(1)#/&n − [0]á = 4 ?

3
2
A 

÷ = 6 

 

8. Determinar la longitud de arco de la curva 9M# = #(# − 3)# en el primer 
cuadrante desde el punto # = 1 hasta el punto # = 3. 

Solución: 

La figura muestra la gráfica de curva 9M# =
#(# − 3)# en el primer cuadrante en el intervalo 
1 ≤ # ≤ 3. A continuación, la ecuación de la curva 
se presenta como una función explicita en 
términos de #, dada por, 

G9M# = G#(# − 3)# 								⇒ 								3M = √#(# − 3) 

!(#) = M =
1
3√

#(# − 3) =
1
3
I√#J

&
− √# 

!(#) =
1
3
(#)&/# − #"/# 

 

Luego se calcula su deriva y después se reemplaza en la expresión 3.18. 

!!(#) =
1
3
∙
3
2
#"/# −

1
2
#*"/# 	=

1
2
#"/# −

1
2
#*"/# =

√#
2
−

1

2√#
 

 

Finalmente, en la expresión 3.18, 
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÷ = 'G1 + [!!(#)]#(#

7

:

= 'p1 + Q
√#
2
−

1

2√#
R
#

(#

&

"

 

÷ = 'p1 + Q
#
4
− 2 ∙

√#
2
∙
1

2√#
+
1
4#
R(#

&

"

= 'p1 +
#
4
−
1
2
+
1
4#
(#

&

"

 

÷ = 'p
#
4
+
1
2
+
1
4#
(#

&

"

= 'pQ
#"/#

2
+

1
2#"/#

R
#

(#

&

"

= 'Q
#"/#

2
+

1
2#"/#

R(#

&

"

 

÷ =
1
2
'#"/#(#

&

"

+
1
2
'#*"/#(#

&

"

= Ä
1
2
∙
2
3
#&/# +

1
2
∙ 2#"/#	Ä

"

&

 

÷ = Ä
1
3
G#& +√#	Ä

"

&

= m
1
3
G3& + √3n − m

1
3
G1& + √1n = 2√3 −

4
3

 

÷ = 2.131 

 

9. Calcular la longitud de arco de la curva !(#) en el intervalo 0 ≤ # ≤ Å/2 si 

!(#) = '√cos @ (@

6

.

 

Solución: 

La curva !(#) se deriva aplicando el teorema fundamental del cálculo, por lo tanto,  

!!(#) =
(
(#
Œ'√cos @ (@

6

.

œ = √cos # 

 

Reemplazamos en la expresión 3.18, 

÷ = 'G1 + [!!(#)]#(#

7

:

= ' s1 + I√cos #J
#
(#

E/#

.

= ' √1 + cos # (#

E/#

.

 

 

Aplicando la siguiente identidad trigonométrica, 

cos#
1
2
# =

1
2
(1 + cos #) 								⇒ 									 (1 + cos #) = 2 cos#

1
2
#	 
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Finalmente, 

÷ = ' p2cos#
1
2
# (#

E/#

.

= √2' cos
1
2
# (#

E/#

.

= Ä2√2 sin
1
2
#Ä
.

E/#

 

÷ = m2√2 sin
1
2
∙
Å
2
	n − m2√2 sin

1
2
(0)n = 2√2 sin

Å
4
− 0 = 2√2 ∙

√2
2

 

÷ = 2 

 

10. La figura muestra un cable telefónico que cuelga entre dos postes en # = −x 
y # = x. Tiene forma de catenaria con ecuación M = ∫ + - cosh(#/-). (a) 
Hallar la longitud del cable en términos de - y x, (b) suponiendo que los dos 
postes telefónicos están separados 50 m, la longitud del cable entre los postes 
es 51 m, y si el punto más bajo del cable debe estar a 20 m del suelo, ¿a qué 
altura de cada poste debe fijarse el cable? 

 
Solución: 

(a) Para la curva dada !(#) = M = ∫ + - cosh(#/-) se va a derivar para poder 
calcular la longitud del cable en términos de - y x mediante el uso de la 
expresión 3.18. 

!!(#) = - sinh F
#
-
H ∙
1
-
= sinh F

#
-
H 

 

Reemplazamos en la expresión 3.18, 

÷ = 'p1 + tsinh F
#
-
Hu
#
(#

7

*7

= 's1 + sinh# F
#
-
H(#

7

*7

 

 



229 

Aplicando la siguiente identidad trigonométrica, 

cosh#
#
-
= 1 + sinh#

#
-
	 

  

Finalmente, y por simetría, 

÷ = 2'scosh#
#
-
(#

7

.

= 2'cosh
#
-
(#

7

.

= ê2- sinh
#
-
ê
.

7
= m2- sinh

x
-
n − [0] 

÷ = 2- sinh
x
-

 

 

(b) Si el punto más bajo de cable es 20 m, eso ocurre cuando # = 0:  

!(0) = ∫ + - = 20										 ⇒ 											∫ = 20 − - 

 

Además, los dos postes telefónicos están 
separados 50 m (es decir, que x = 25	•), la 
longitud del cable entre los postes es ÷ = 51	•. 
La figura muestra la gráfica de la curva ÷ = M y 
que está dada por, 

M = 2# sinh
25
#

 

 

De la figura se observa que cuando M = 51	•, 
entonces # es, 

# = - = 72.34	• 

 

Finalmente, la altura de cada poste donde debe fijarse el cable está dada por, 

!(#) = ∫ + - cosh ?
25
-
A = 20 − - + - cosh ?

25
-
A 

!(#) = 20 − 72.34 + 72.34 cosh ?
25
72.34

A 

!(#) = 24.36	• por encima del suelo 
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Capítulo 4: 
Ecuaciones 

diferenciales 
ordinarias



231 

4.1. Ecuaciones diferenciales homogéneas (variables separables) de primer orden. 

Si es posible agrupar M e M′ en una parte de la ecuación diferencial y el "resto" en la 
otra parte, se tiene una ecuación diferencial con variables separables. Utilizando la 
notación M! = (M/(# se obtiene una ecuación que puede escribirse de la forma: 

(M
(#

=
!(#)
i(M)

											⇒ 							i(M)(M = !(#)(# 

donde f y g son dos funciones. 

Existen diferentes maneras de expresar una ecuación diferencial con variables 
separables, tales como: 

(M
(#

= !(#)i(M) 						⇒ 									
(M
i(M)

= !(#)(#					 

Si i(M) ≠ 0. 

Una ecuación diferencial con variables separadas se define mediante la forma, 

‘(M)(M + Ë(#)(# = 0 

En general, la solución de esta ecuación viene dada por, 

'‘(M)(M +'Ë(#)(# = * 

Solución general de una ecuación diferencial:  

Por ejemplo, sea la ecuación diferencial 

(!(#)
(#

= 2# + 1 

Podemos ver que la función !"(#) = ## + # y su primera derivada verifica la 
ecuación según la definición de solución de una ecuación diferencial. Además, la 
función !#(#) = ## + 2# − 3 y su primera derivada también verifica la ecuación, 
por lo que también es una solución (sólo una solución) .... Entonces hay un número 
infinito de funciones, cada una de las cuales no es más que una solución. En general, 
la función, 

!(#) = M = ## + # + * 

Entonces, !(#) = M se llama solución general de la ecuación, porque podemos 
obtener todas las demás soluciones con una elección adecuada de la constante *. 
Finalmente, la solución general de una ecuación diferencial es aquella que contiene 
un número de constantes igual al orden de la ecuación. 
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Solución particular de una ecuación diferencial:  

A la ecuación diferencial se le agregan un número de condiciones (llamadas 
condiciones iniciales o condiciones de frontera) iguales al orden de la ecuación 
diferencial, lo que permite especificar las constantes opcionales en la solución 
general de la ecuación. El resultado se denomina solución particular de la ecuación 
porque verifica las condiciones iniciales dadas. En general, la solución particular es 
la que se deriva de la solución general una vez definidas las constantes (utilizando 
las condiciones iniciales).  

A continuación, se presentan el desarrollo de ejercicios de ecuaciones diferenciales 
de primer orden con variables separables. 

 

1. Encontrar la solución general de la siguiente ecuación diferencial, 

(M
(#

=
o#6

4M&
 

Solución: 

La ecuación diferencial presentada es separable, para lo cual la expresión del 
denominador del lado derecho se multiplica al diferencial (M, mientras que la 
expresión del numerador se multiplica por el diferencial (#, posteriormente se 
procede a integrar, 

'4M&(M = 'o#6(# 

4 ∙
1
4
M) =

1
2
o#6 + * 

M) =
1
2
o#6 + * 

Finalmente, la solución general de la ecuación diferencial es 

M = p
1
2
o#6 + *

"
 

 
2. Encontrar la solución general de la siguiente ecuación diferencial, 

2√#
(M
(#

= G1 − M# 
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Solución: 

La ecuación diferencial presentada es separable, y se procede como el ejercicio 
anterior, las variables dependientes e independientes son separadas según el 
diferencial (M o (#, es decir,  

'
(M

G1 − M#
= '

(#

2√#
 

La integral de la izquierda se emplea el teorema 1.11 (véase el capítulo 1), mientras 
que la del lado derecho se utiliza la integración de una potencia, por lo tanto, 

'
(M

G1 − M#
=
1
2
'#*"/#(# 

sin*" M =
1
2
∙ 2√# + * 

M = sinI√# + *J 											Solución	General 

 

3. Resolver la siguiente ecuación diferencial, 

(M
(#

=
o*6 − #
M + oA

 

Solución: 

Como en los ejercicios previos de esta sección se trata de una ecuación diferencial 
separable. En consecuencia, se procede a separar las variables y aplicamos la 
operación de integración,  

'(M + oA)(M = '(# − o*6)(# 

Integramos ambas expresiones, 

1
2
M# + oA =

1
2
## − (−o*6) + * 

M# + 2oA = ## + 2o*6 + 2* 

M# − ## + 2(oA − o*6) = *"											Solución	General 

 

4. Encontrar la solución general de la siguiente ecuación diferencial, 
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M! = 1 + # + M + #M 

Solución:  

Primero factorizamos la expresión derecha y se observa que la ecuación diferencial 
presentada es separable, y se procede como en los ejercicios anteriores, es decir,  

(M
(#

= (# + 1) + M(# + 1) = (# + 1)(M + 1) 

'
(M
M + 1

= '(# + 1)(# 

Para la expresión izquierda se utiliza el teorema 1.14 (ver capítulo 1), y de la derecha 
se tiene la integración de potencia y constante, por lo tanto, la solución general es: 

ln(M + 1) =
1
2
## + # + *												Solución	General 

 

5. Encontrar la solución general de la siguiente ecuación diferencial, 

M! = 1 + # + M# + #M# 

Solución:  

Primero factorizamos la expresión de la derecha y como se observa que la ecuación 
diferencial es separable.  

(M
(#

= (1 + #) + M#(1 + #) 

(M
(#

= (1 + #)(1 + M#) 

Despejamos los diferenciales y aplicamos la integral en ambas expresiones, 

'
(M

1 + M#
= '(1 + #)(# 

La expresión izquierda corresponde al teorema 1.12 (ver capítulo 1), mientras que 
de la derecha se utiliza la integración de potencia y constante, por lo tanto, 

tan*" M = # +
1
2
## + * 

M = tan ?
1
2
## + # + *A 												Solución	General 
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6. Encontrar la solución general de la siguiente ecuación diferencial, 

(## + 1)(tan M)M! = # 

Solución:  

La ecuación diferencial presentada es separable, y se procede como en los ejercicios 
anteriores, en consecuencia,  

(## + 1)(tan M)
(M
(#

= # 

Despejamos los diferenciales y aplicamos la integral en ambas expresiones, 

'(tanM)(M = '
#

(## + 1)
(# 

'
sin M
cos M

(M = '
#

(## + 1)
(# 

En ambas expresiones se utiliza el método del cambio de variable, 

N = cos M 							⇒ 								(N = −sin M (M							 ⇒ 							 sin M (M = −(N 

, = ## + 1					 ⇒ 								(, = 2#(#							 ⇒ 								#(# =
1
2
(, 

Sustituimos e integramos, 

'
−(N
N

=
1
2
'
(,
,

 

− lnN =
1
2
ln , + * 

ln(cos M)*" = ln FG## + 1H + * 

Aplicando propiedades de logaritmo natural, 

oM@(CD>A)
&(
= oM@`]6

%%"a%b  

oM@(CD>A)
&(
= oM@`]6

%%"aob  

Pero, ob = *" 

(cos M)*" = *"G## + 1 
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1
cos M

= *G## + 1 

sec M = *G## + 1 

Por lo tanto, la solución general es: 

M = sec*" F*G## + 1H 													Solución	General 

 

7. Resolver la siguiente ecuación diferencial, 

M*"(M + MoCD> 6 sin # (# = 0 

Solución: 

La ecuación diferencial presentada es separable, separamos sus variables y 
aplicamos integración en ambas expresiones,  

1
M
(M = −MoCD> 6 sin # (# 

'
(M
M#

= −'oCD> 6 sin # (# 

La expresión del lado izquierdo se evalúa mediante integración de potencia, y la del 
lado derecho se evalúa mediante un cambio de variable. Se realiza el cambio de 
variable, 

, = cos # 								⇒ 										(, = −sin # (# 

Sustituimos, 

'M*#(M = 'o4(N 

−M*" = o4 + * 

−
1
M
= oCD> 6 + * 

M = −
1

oCD> 6 + *
												Solución	General 

 

8. Encontrar la solución general de la siguiente ecuación diferencial, 
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(1 − ##)
(M
(#

= 2M 

Solución: 

Para la ecuación diferencial presentada separamos sus variables, y aplicamos 
integración en ambas expresiones,  

'
(M
M
= '

2(#
1 − ##

 

La integral de la izquierda se emplea el teorema 1.14 (véase el capítulo 1), mientras 
que la del lado derecho se integra por fracciones parciales, por lo tanto, 

ln M = '
2

(1 + #)(1 − #)
(# 

ln M = '
µ

(1 + #)
(# +'

∂
(1 − #)

(# 

Tenemos que calcular µ y ∂ mediante el método de encubrimiento, 

µ =
2

(1 − #)
Ä
6Q*"

=
2

(1 + 1)
															⇒ 																µ = 1 

∂ =
2

(1 + #)
Ä
6Q"

=
2

(1 + 1)
																	⇒ 																∂ = 1 

Sustituimos los valores de µ y ∂, 

ln M = '
1

(1 + #)
(# +'

1
(1 − #)

(# 

Por lo tanto, la solución general de la ecuación diferencial es: 

ln M = ln(1 + #) − ln(1 − #) + * 

O también, se expresa como: 

ln M = ln ?
1 + #
1 − #

A + * 

Por lo tanto, 

oM@ A = oM@`
"%6
"*6a%b 										⇒ 											 oM@ A = oM@`

"%6
"*6aob  

Pero, ob = *" y finalmente, 
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M = *" ?
1 + #
1 − #

A 												Solución	General 

 
9. Una función M(@) satisface la ecuación diferencial 

(M
(@

= M) − 6M& + 5M# 

(a) para que valores de "M"	es "M" creciente, (b) para que valores de "M"	es "M" 

decreciente, y (c) determinar la solución general de la ecuación diferencial 

Solución: 

Primero se procede a calcular los valores de M en las que la función (a) crece y (b) 
decrece (conocidos como puntos críticos de la función que se utiliza en el criterio de 
la primera y segunda derivada), y esto se calcula haciendo que M! = 0, en 
consecuencia, 

(M
(@

= 0																			 ⇒ 														 M#(M# − 6M + 5) = 0 

M#(M − 1)(M − 5) = 0 

Por lo tanto, los valores críticos de la función (VCF) en la que crece o decrece son: 

⁄*% = {0, 1, 5}	

Evaluando cada uno de los VCF, se obtiene: 

M < 0, entonces M! = (−1)#(−2)(−6) = +12 > 0, es creciente 

0 < M < 1, entonces M! = (0.5)#(−0.5)(−4.5) = +1.125 > 0, es creciente 

1 < M < 5, entonces M! = (2)#(1)(−3) = −12 < 0, es decreciente 

M > 5, entonces M! = (6)#(5)(1) = +180 > 0, es creciente 

(-)	M es creciente, si  

(M
(@

> 0										 ⇒ 										 M#(M − 1)(M − 5) > 0 

Por lo tanto, el conjunto solución en la que M es creciente, es: 
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M ∈ (−∞, 0) ∪ (0, 1) ∪ (5,+∞)	

(x)	M es decreciente, si  

(M
(@

< 0									 ⇒ 										 M#(M − 1)(M − 5) < 0	

Por lo tanto, el conjunto solución en la que M es decreciente, es: 

M ∈ (1, 5) 

(c) ahora se procede a calcular la solución general de la ecuación diferencial de 
primer orden de variable separable,  

'
(M

M#(M − 1)(M − 5)
= '(@ 

En la expresión del lado izquierdo se utiliza la técnica de integración por fracciones 
parciales 

'
(M

M#(M − 1)(M − 5)
= '

µ
M
(M + '

∂
M#
(M +'

*
M − 1

(M +'
ö

M − 5
(M	

Se observa que la expansión de fracciones parciales se tiene factores lineales 
repetidos y no repetidos. Por lo tanto, utilizamos el método del encubrimiento para 
calcular los valores de ∂, * y ö 

1
M#(M − 1)(M − 5)

=
µ
M
+
∂
M#
+

*
M − 1

+
ö

M − 5
	

∂ =
1

(M − 1)(M − 5)
Ä
AQ.

=
1

(−1)(−5)
										⇒ 													∂ =

1
5

 

* =
1

M#(M − 5)
Ä
AQ"

=
1

(1)#(−4)
										⇒ 													* = −

1
4

 

ö =
1

M#(M − 1)
Ä
AQ'

=
1

(5)#(4)
													⇒ 													ö =

1
100

 

Como se trata de factores lineales repetidos, en este caso para calcular µ se deriva 
la expresión que permitió obtener ∂,  

µ =
(∂
(M

=
(
(M
m

1
(M − 1)(M − 5)

nÄ
AQ.

=
−[(M − 1)(1) + (M − 5)(1)]

(M − 1)#(M − 5)#
è
AQ.
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µ =
6

(M − 1)#(M − 5)#
Ä
AQ.

																						⇒ 													µ =
6
25

 

Regresando a la ecuación diferencial separable, se sustituyen los valores obtenidos, 
por lo tanto, 

'
µ
M
(M +'

∂
M#
(M +'

*
M − 1

(M +'
ö

M − 5
(M = '(@ 

6
25
'
(M
M
+
1
5
'
(M
M#

−
1
4
'

(M
M − 1

+
1
100

'
(M
M − 5

= '(@ 

Integramos y obtenemos la solución general de la ecuación diferencial, 

6
25
ln|M| −

1
5M

−
1
4
ln|M − 1| +

1
100

ln|M − 5| = @ + *											Solución	General 

 
10. Determinar la solución general y particular de la ecuación diferencial de primer 

orden, 

(M
(#

=
3## + 4# + 2
2(M − 1)

 

con M(0) = −1 

Solución: 

La ecuación diferencial presentada separamos sus variables y aplicamos integrales 
en ambas expresiones,  

'2(M − 1)(M = '(3## + 4# + 2)(# 

2 ∙
1
2
M# − 2M = 3 ∙

1
3
#& + 4 ∙

1
2
## + 2# + * 

Por lo tanto, la solución general de la ecuación diferencial es, 

M# − 2M = #& + 2## + 2# + *												Solución	General 

Se sabe que la condición inicial es M(0) = −1, lo que indica que # = 0, M = −1 con 
esto se calcula el valor de la constante *, 

(−1)# − 2(−1) = 0& + 2(0)# + 2(0) + *											 ⇒ 										* = 3 
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Finalmente, la solución particular de la ecuación diferencial es, 

M# − M = #& + 2## + 2# + 3												Solución	Particular 

 
11. Resolver la siguiente ecuación diferencial, 

(#
(@

=
# cos @
1 + 2##

 

con #(0) = 1 

Solución: 

Separamos las variables de la ecuación diferencial, y aplicamos integración en 
ambas expresiones,  

'
1 + 2##

#
(# = 'cos @ (@ 

'Q
1
#
+
2##

#
R(# = sin @ + * 

'
(#
#
+ 2'#(# = sin @ + * 

ln|#| + 2 ∙
1
2
## = sin @ + * 

ln|#| + ## = sin @ + *												Solución	General 

Se sabe que la condición inicial es que # = 1 cuando @ = 0, y calculamos la 
constante *, 

ln|1| + 1# = sin 0 + *											 ⇒ 										* = 1	 

Finalmente, la solución particular de la ecuación diferencial es, 

ln|#| + ## = sin @ + 1												Solución	Particular 

 

12. Determinas las soluciones general y particular de la ecuación diferencial con 

valor inicial definida por, 
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(M
(#

=
12#& + 12##

M#oA!
,						M(1) = 0 

Solución: 

Procedemos a separar las variables y aplicamos la integración en ambas 
expresiones, 

'M#oA
!
(M = '(12#& + 12##)(# 

A la expresión izquierda aplicamos cambio de variable, y la otra expresión se utiliza 
integración de potencias, por lo tanto, 

, = M& 									⇒ 								(, = 3M#(M										 ⇒ 									 M#(M =
1
3
(, 

Sustituimos el cambio de variable, 

'o8 ?
1
3
(,A = 12 ∙

1
4
#) + 12 ∙

1
3
#& + * 

1
3
'o8(, = 3#) + 4#& + * 

1
3
oA

!
= 3#) + 4#& + * 

oA
!
= 9#) + 12#& + *" 

Despejamos M, aplicando logaritmo neperiano en ambas expresiones, 

ln oA
!
= ln(9#) + 12#& + *") 

M& = ln(9#) + 12#& + *") 

La solución general a la ecuación diferencial es, 

M = Gln(9#) + 12#& + *")
! 												Solución	General 

De acuerdo con las condiciones iniciales del problema M(1) = 0, obtenemos la 

constante *". 

0& = ln[9(1)) + 12(1)& + *"] 						⇒ 								0 = ln(21 + *") 
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o. = oM@(#"%b()																																															1 = 21 + *" 

*" = −20 

Finalmente, la solución particular explicita de la ecuación diferencial es, 

M = Gln(9#) + 12#& − 20)! 												Solución	Particular 

 

13. Resolver el problema de valor inicial dado en forma explícita y determine el 

intervalo en que está definida. 

M! =
2#

M + ##M
,						M(0) = −2 

Solución: 

A la ecuación diferencial presentada factorizamos para separar sus variables y 
aplicamos la integración en ambas expresiones, 

(M
(#

=
2#

M(1 + ##)
 

'M(M = '
2#

## + 1
(# 

Integramos ambas expresiones, pero en la expresión derecha aplicamos un cambio 
de variable, 

, = ## + 1											 ⇒ 											(, = 2#(# 

Se procede a sustituir el cambio de variable e integramos ambas expresiones, por lo 

tanto, 

1
2
M# = '

(,
,

 

1
2
M# = ln, + * 

Sustituimos el valor de , y expresamos la solución general explicita, 

M# = 2 ln(## + 1) + 2* 

M = G2 ln(## + 1) + *"												Solución	General 
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Para la condición inicial dada M(0) = −2, 
calculamos la constante *" 

(−2)# = 2 ln(0# + 1) + *" 

*" = 4 

Sustituimos en la solución general, 
quedando 

M = ±G2 ln(## + 1) + 4 

La gráfica mostrada a la derecha se observa 
de color rojo G2 ln(## + 1) + 4 y de color 
azul −G2 ln(## + 1) + 4. Esta última 
satisface la condición inicial M(0) = −2.  

En consecuencia, la solución particular de la ecuación diferencial es, 

M = −G2 ln(## + 1) + 4												Solución	Particular 

Ahora determinamos el intervalo de valores de # está definida la solución particular 
dada la condición inicial M(0) = −2. A continuación, es necesario que se cumpla: 

(i) 2 ln(## + 1) + 4 > 0 

(ii) se sabe que ln(,) no existe para , ≤ 0, para lo cual, ## + 1 ≥ 1 para toda # que 
pertenece al conjunto de los números reales (también se lee ∀# ∈ ℝ). Por lo tanto, 
ln(## + 1) ≥ 0, ∀# ∈ ℝ. 

(iii) finalmente, se deduce que 2 ln(## + 1) + 4 > 0, ∀# ∈ ℝ  es decir, que el 
intervalo de valores es, 

−∞ < # < +∞ 

 

14. Determinas las soluciones general y particular de la ecuación diferencial con 

valor inicial definida por, 

(M
(#

−
M(M + 1)
#(# − 1)

,						M(2) = 1 

Solución: 
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Procedemos a separar las variables y aplicamos la integración en ambas 
expresiones, 

'
(M

M(M + 1)
= '

(#
#(# − 1)

 

Para evaluar las dos expresiones utilizamos la técnica de integración por fracciones 
parciales, en consecuencia, 

'
µ
M
(M +'

∂
M + 1

(M = '
*
#
(# +'

ö
# − 1

(# 

La expansión de fracciones parciales en ambas expresiones tiene factores lineales 
no repetidos. Utilizamos el método del encubrimiento para calcular los valores de 
µ, ∂ para la variable separable M,  

1
M(M + 1)

=
µ
M
+

∂
M + 1

 

µ =
1

M + 1
Ä
AQ.

=
1
1
										⇒ 									µ = 1 

∂ =
1
M
Ä
AQ*"

=
1
−1

												⇒ 									∂ = −1 

De manera similar, ahora calculamos * y ö 

1
#(# − 1)

=
*
#
+

ö
# − 1

 

* =
1

# − 1
Ä
6Q.

=
1
−1

										⇒ 						* = −1 

ö =
1
#
Ä
6Q"

=
1
1
																				⇒ 							ö = 1 

Regresando a la expansión de fracciones parciales, se sustituyen los valores 
obtenidos, por lo tanto, 

'
(M
M
−'

(M
M + 1

= −'
(#
#
+'

(#
# − 1

 

ln M − ln(M + 1) = − ln # + ln(# − 1) + * 
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Aplicamos la propiedad de logaritmo natural de cocientes, 

ln ?
M

M + 1
A = ln ?

# − 1
#

A + * 

En ambas expresiones se observa logaritmo natural y recordemos que tienen como 
base a o, por lo tanto, reescribimos esta expresión como una ecuación exponencial, 

o
M@` A

A%"a = oM@`
6*"
6 a%b 												⇒ 										 o

M@` A
A%"a = oM@`

6*"
6 aob  

M
M + 1

=
# − 1
#

ob 																			⇒ 										
#

# − 1
o*b =

M + 1
M

 

Se sabe que o*b  es una constante, que se define como *", y despejamos para 
obtener la solución general explicita de la ecuación diferencial, 

#
# − 1

*" =
M + 1
M

																		⇒ 											#M*" = (# − 1)(M + 1) 

#M*" = #M + # − M − 1					 ⇒ 												M(*"# − # + 1) = # − 1							 

M =
# − 1

*"# − # + 1
											Solución	General 

Dada la condición inicial M(2) = 1, se calcula la constante *", 

1 =
2 − 1

*"(2) − 2 + 1
									⇒ 											2*" − 1 = 1									 ⇒ 											 *" = 1 

Finalmente, la solución particular es, 

M = # − 1											Solución	Particular 

 

15. Resolver el problema de valor inicial dado en forma explícita y determine el 

intervalo en que está definida. 

M! =
2#

1 + 2M
,						M(2) = 0 

Solución: 

Procedemos a separar sus variables y aplicamos la integración en ambas 
expresiones, 
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'(1 + 2M)(M = '2#(# 

Evaluamos ambas expresiones mediante integración inmediata de potencias, y se 
obtiene la solución general implícita, 

M + M# = ## + *											Solución	General 

Para la condición inicial dada M(2) = 0, calculamos la constante * 

0 + 0# = 2# + *												 ⇒ 									* = −4 

En consecuencia, la solución particular implícita de la ecuación diferencial es, 

M + M# = ## − 4 

Nos pide expresar la solución particular explicita, para lo cual debemos resolver la 
anterior ecuación cuadrática que esta expresada de forma implícita, 

M# + M + (4 − ##) = 0 

M",# =
−1 ± G1# − 4(1)(4 − ##)

2
=
−1 ± √1 − 16 + 4##

2
 

M",# =
−1 ± √4## − 15

2
 

 
La gráfica mostrada a la derecha se observa 

de color rojo !"!√$%
/!"&

'  y de color azul 
!"(√$%/!"&

' . Esta última satisface la 
condición inicial de la solución general dada 
por M(2) = 0 y se encuentra en el I 
cuadrante. Y la única solución que cumple 
con la condición inicial es,  

M =
−1 + √4## − 15

2
								Solución	Particular 

Ahora hallamos el intervalo de valores de # en la que está definida, se sabe que la 
solución particular debe satisfacer a la solución particular, es decir, que 

4## − 15 > 0 

I2# − √15JI2# + √15J > 0 

` 
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De acuerdo con propiedades de inecuaciones, se tiene que, 

2# − √15 > 0	 ∧ 	2# + √15 > 0				 ∨ 				2# − √15 < 0	 ∧ 	2# + √15 < 0 

# >
√15
2
			∧ 			# > −

√15
2
							∨ 						# <

√15
2
			∧ 			# < −

√15
2

 

En la gráfica se observa el punto (2, 0) que corresponde a la condición inicial, por lo 
tanto, se comprueba que la única solución que satisface dicha condición y cercano 
al mismo, es,  

# >
√15
2

 

 

16. Determinar las soluciones general y particular de forma implícita para la 

ecuación diferencial ordinaria, 

M! =
#M + 2M − # − 2
#M − 3M + # − 3

,						M(4) = 2 

Solución: 

La expresión de la izquierda la reescribimos en forma diferencia, y la expresión de 
la derecha factorizamos mediante agrupación de términos semejantes,  

(M
(#

=
M(# + 2) − (# + 2)
M(# − 3) + # − 3

=
(# + 2)(M − 1)
(# − 3)(M + 1)

 

Separamos las variables y aplicamos integración en ambas expresiones, 

'
M + 1
M − 1

(M 	= '
# + 2
# − 3

(# 

Antes de evaluar las integrales de ambas expresiones aplicamos un artificio 
matemático en el numerador (este método no requiere el uso de división sintética 
o división larga, ni de cambio de variable), 

'
(M − 1) + 1 + 1

M − 1
(M 	= '

(# − 3) + 3 + 2
# − 3

(# 

'
M − 1
M − 1

(M +'
2

M − 1
(M = '

# − 3
# − 3

(# + '
5

# − 3
(# 
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'(M + 2'
(M
M − 1

= '(# + 5'
(#
# − 3

 

M + 2 ln(M − 1) = # + 5 ln(# − 3) + * 

Aplicamos propiedades de logaritmo natural, 

M + ln(M − 1)# = # + ln(# − 3)' + * 

ln
(M − 1)#

(# − 3)'
= # − M + * 

Cancelamos el logaritmo natural 

o
M@(A*")

%
(6*&)) = o6*A%b  

(M − 1)#

(# − 3)'
= o6*Aob  

En consecuencia, la solución general de la ecuación diferencial se expresa de forma 
implícita, 

(M − 1)#

(# − 3)'
= *"o6*A											Solución	General 

Dada la condición inicial M(4) = 2 se calcula la constante *",  

(2 − 1)#

(4 − 3)'
= *"o)*# 											⇒ 								1 = *"o# 											⇒ 									 *" = o*# 

Finalmente, la solución particular de la ecuación diferencial es, 

(M − 1)#

(# − 3)'
= o*#o6*A	 

(M − 1)#

(# − 3)'
= o6*A*#											Solución	Particular	 

 
17. Resolver la siguiente ecuación diferencial, 

#M# + 3M# − ##M! = 0,				M(1) = 3	 
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Solución: 

A la ecuación diferencial dada separamos sus variables y factorizamos mediante 
agrupación de términos semejantes, 

##
(M
(#

= M#(# + 3) 

Aplicamos integración en ambas expresiones, y evaluamos  

'
(M
M#

= '
# + 3
##

(# 

−
1
M
= '

#
##
(# +'

3
##
(# 

−
1
M
= '

(#
#
+ 3'#*#(# 

−
1
M
= ln # −

3
#
+ * 

−
1
M
=
# ln # − 3 + *#

#
 

Por lo tanto, la solución general es, 

M = −
#

# ln # − 3 + *#
											Solución	General 

Calculamos la constante * dada la condición inicial M(1) = 3 

3 = −
1

−3 + *(1)
											⇒ 									3 =

1
3 − *

 

3(3 − *) = 1																			 ⇒ 								9 − 3* = 1 

* =
8
3

 

Finalmente,	la	solución	particular	es,	

M = −
#

# ln # − 3 + 83#
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M = −
3#

3# ln # + 8# − 9
											Solución	Particular	 

 

4.2. Ecuaciones diferenciales lineales de primer orden con coeficientes 

constantes. 

En esta sección vamos a estudiar cómo resolver ecuaciones diferenciales lineales de 
primer orden con coeficientes constantes. Una ecuación diferencial lineal de primer 
orden es cualquier relación entre: 

- una variable, por ejemplo: # 
- una función de # denotada por M(#) 
- la primera derivada de esta función: M!(#) 

En general una ecuación diferencial lineal (EDL) de primer orden se define como, 

ú(#)
(M(#)
(#

+ ’(#)M(#) = !(#) 

donde ú(#), ’(#) y !(#) son funciones previamente establecidas en la EDL y que 
dependen de la variable independiente. A continuación, se muestran ejemplos de 
ecuaciones diferenciales lineales y no lineales de primer orden. 

(3## − 2)M! + o6M = ln(#) 														SI	es	una	EDL 

#M! + 2M = sin # 																																	SI	es	una	EDL 

#M! + cos# # M = #&																												SI	es	una	EDL 

#&M! + M# = o6																																				NO	es	una	EDL 

M! + #M# = 0																																								NO	es	una	EDL 

(1 + M#)M! + M = o6																										NO	es	una	EDL 

 

Una ecuación diferencial lineal de primer orden con coeficientes constantes es 
aquella en la que ú(#) y ’(#) son constantes, y se expresa como, 

M!(#) + å(#)M(#) = !(#) 

donde, å(#) = ’(#)/ú(#) pero ú(#) ≠ 0. Para resolver o integrar una ecuación 
diferencial de primer orden es necesario encontrar todas las funciones que verifican 
la relación que caracteriza esta ecuación y especificar en qué intervalo o intervalos 
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es válida la solución. Cuando se trata de ecuaciones diferenciales lineales de primer 
orden con coeficientes constantes, dicho intervalo corresponde al intervalo en el 
que está definida !(#).  

Las ecuaciones diferenciales lineales de coeficientes constantes se clasifican en: 

a. homogéneas (o sin segundo miembro) o ecuaciones separables 

M!(#) + åM(#) = 0 

Ø hay una solución M = 0 
Ø buscamos soluciones no cancelables en ningún punto. Entonces, la 

ecuación diferencial es separable y puede escribirse, 
M! = −åM 

'
(M
M
= −å'(# 

ln|M| = −å# + * 

M = o*d6ob  

Al no cancelarse M por ser continua, no cambia de signo. Además, se sabe 
que ob = *, por lo tanto,  

M = *o*d6 

 
b. no homogéneas (o con segundo miembro) 

M!(#) + åM(#) = !(#) 

Ø Método de variación de la constante, para resolver una ecuación 
diferencial lineal no homogénea tenemos que obtener la solución 
general: 

Me = Mf + MN 

donde,  

a. Mf es la solución homogénea de la ecuación: M! + åM = 0 la cual 
resulta ser Mf = *o*d6 

b. MN es la solución particular de la ecuación diferencial completa que 
se obtiene a través del método de variación de la constante y esta 
solución se obtiene buscando la forma de !(#), que puede ser una 
forma algebraica, exponencial y trigonométrica.   
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A continuación, se presentan ejercicios resueltos de ecuaciones diferenciales de 
primer orden con coeficientes constantes no homogéneas. 

18. Determinar la solución general de la ecuación diferencial lineal de primer 

orden, 

M! − M = 5# − 1 

Solución: 

Se sabe que la ecuación diferencial es lineal de primer orden con coeficientes 
constantes y no homogénea. Para resolver este tipo de ecuaciones diferenciales 
utilizamos el método de variación de constante.  

Paso 1: obtener la solución homogénea de, 

M! − M = 0																	 ⇒ 														 M! = M 

(M
M
= (#												 ⇒ 												 ln M = # + * 

Por lo tanto, la solución homogénea es, 

Mf = *o6 

Paso 2: obtener la solución particular de la ecuación diferencial no homogénea 	
MN
! − MN = 5# − 1. El segundo miembro se trata de un factor lineal de la forma  
MN = µ# + ∂. Por lo tanto, derivamos MN: 

MN
! = µ 

Después, sustituimos en la ecuación: 

MN
! − MN = 5# − 1 

µ − µ# − ∂ = 5# − 1 

Ordenamos y evaluamos las constantes µ y ∂, 

−µ# + (µ − ∂) = 5#	−1 

−µ# = 5#																 ⇒ 															µ = −5 

µ − ∂ = −1													 ⇒ 														−5 + 1 = ∂												 ⇒ 														∂ = −4 

Por lo tanto, la solución particular es, 

MN = −5# − 4 
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Finalmente, la solución general de la ecuación diferencial dada es, 

Me = *o6 − 5# − 4 

 

19. Determinar la solución general de la ecuación diferencial lineal de primer 

orden, 

M! − 2M = 1 − 6# 

Solución: 

Se sabe que la ecuación diferencial es lineal de primer orden con coeficientes 
constantes y no homogénea. Para resolver este tipo de ecuaciones diferenciales 
utilizamos el método de variación de constante.  

Paso 1: obtener la solución homogénea de, 

M! − 2M = 0																	 ⇒ 														 M! = 2M 

(M
M
= 2(#																					 ⇒ 												 ln M = 2# + * 

Por lo tanto, la solución homogénea es, 

Mf = *o#6 

Paso 2: obtener la solución particular de la ecuación diferencial no homogénea 	
MN
! − 2MN = 1 − 6#. El segundo miembro se trata de un factor lineal de la forma  
MN = µ# + ∂. Por lo tanto, derivamos MN: 

MN
! = µ 

Después, sustituimos en la ecuación: 

MN
! − 2MN = 1 − 6# 

µ − 2µ# − 2∂ = 1 − 6# 

Ordenamos y evaluamos las constantes µ y ∂, 

−2µ# + (µ − 2∂) = −6# + 1 

−2µ# = −6#										 ⇒ 												µ = 3 

µ − 2∂ = 1														 ⇒ 									3 − 1 = 2∂												 ⇒ 														∂ = 1 
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Por lo tanto, la solución particular es, 

MN = 3# + 1 

Finalmente, la solución general de la ecuación diferencial dada es, 

Me = *o#6 + 3# + 1 

 

20. Determinar la solución general de la ecuación diferencial lineal de primer 

orden, 

M! + 3M = 15## + # 

Solución: 

Se sabe que la ecuación diferencial es lineal de primer orden con coeficientes 
constantes y no homogénea. Vamos a utilizar el método de variación de constante.  

Paso 1: obtener la solución homogénea de, 

M! + 3M = 0																		 ⇒ 																				 M! = −3M 

(M
M
= −3(#																						 ⇒ 																	 ln M = −3# + * 

Por lo tanto, la solución homogénea es, 

Mf = *o*&6 

Paso 2: obtener la solución particular de la ecuación diferencial no homogénea 	
MN
! + 3MN = 15## + #. El segundo miembro se trata de un factor cuadrático de la 

forma  MN = µ## + ∂# + *. Por lo tanto, derivamos MN: 

MN
! = 2µ# + ∂ 

Después, sustituimos en la ecuación: 

MN
! + 3MN = ## + # 

2µ# + ∂ + 3µ## + 3∂# + 3* = 15## + # 

Ordenamos y evaluamos las constantes µ y ∂, 

3µ## + (2µ + 3∂)# + (∂ + 3*) = 15## + # 

3µ## = 15## 															⇒ 														µ = 5 
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(2µ + 3∂)# = #										 ⇒ 									3∂ = 1 − 2(5) 												⇒ 														∂ = −3 

∂ + 3* = 0																			 ⇒ 								3* = −∂																							 ⇒ 														* = 1 

Por lo tanto, la solución particular es, 

MN = 5## − 3# + 1 

Finalmente, la solución general de la ecuación diferencial dada es, 

Me = *o*&6 + 5## − 3# + 1 

 

21. Determinar la solución general de la ecuación diferencial lineal de primer 

orden, 

M! + 5M = 12o*#6 

Solución: 

Se sabe que la ecuación diferencial es lineal de primer orden con coeficientes 
constantes y no homogénea. Vamos a utilizar el método de variación de constante.  

Paso 1: obtener la solución homogénea de, 

M! + 5M = 0																	 ⇒ 																				 M! = −5M 

(M
M
= −5(#																		 ⇒ 																	 ln M = −5# + * 

Por lo tanto, la solución homogénea es, 

Mf = *o*'6 

Paso 2: obtener la solución particular de la ecuación diferencial no homogénea 	
MN
! + 5MN = 12o*#6. El segundo miembro se trata de un factor exponencial de la 

forma  MN = µo*#6. Por lo tanto, derivamos MN: 

MN
! = −2µo*#6 

Después, sustituimos en la ecuación: 

MN
! + 5MN = 12o*#6 

−2µo*#6 + 5µo*#6 = 12o*#6 

Factorizamos y evaluamos la constante µ, 
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3µo*#6 = 12o*#6 														⇒ 														µ = 4 

Por lo tanto, la solución particular es, 

MN = 4o*#6 

Finalmente, la solución general de la ecuación diferencial dada es, 

Me = *o*&6 + 4o*#6 

 

22. Determinar la solución general de la ecuación diferencial lineal de primer 

orden, 

M! + M = o#6 

Solución: 

Se sabe que la ecuación diferencial es lineal de primer orden con coeficientes 
constantes y no homogénea. Vamos a utilizar el método de variación de constante.  

Paso 1: obtener la solución homogénea de, 

M! + M = 0																	 ⇒ 																				 M! = −M 

(M
M
= −(#																		 ⇒ 																	 ln M = −# + * 

Por lo tanto, la solución homogénea es, 

Mf = *o*6 

Paso 2: obtener la solución particular de la ecuación diferencial no homogénea 	
MN
! + MN = o#6. El segundo miembro se trata de un factor exponencial de la forma  
MN = µo#6. Por lo tanto, derivamos MN: 

MN
! = 2µo#6 

Después, sustituimos en la ecuación: 

MN
! + MN = o#6 

2µo#6 + µo#6 = o#6 

Factorizamos y evaluamos la constante µ, 
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3µo#6 = o#6 												⇒ 														µ =
1
3

 

Por lo tanto, la solución particular es, 

MN =
1
3
o#6 

Finalmente, la solución general de la ecuación diferencial dada es, 

Me = *o*6 +
1
3
o#6 

 

23. Determinar la solución general de la ecuación diferencial lineal de primer 

orden, 

M! + M = #o*6 

Solución: 

Se sabe que la ecuación diferencial es lineal de primer orden con coeficientes 
constantes y no homogénea. Vamos a utilizar el método de variación de constante.  

Paso 1: obtener la solución homogénea de, 

M! + M = 0																	 ⇒ 																				 M! = −M 

(M
M
= −(#																		 ⇒ 																	 ln M = −# + * 

Por lo tanto, la solución homogénea es, 

Mf = *o*6 

Paso 2: obtener la solución particular de la ecuación diferencial no homogénea 	
MN
! + MN = #o*6. El segundo miembro se trata de un factor exponencial-lineal de la 

forma MN = o*6(µ# + ∂) pero la solución homogénea tenemos un factor repetido, 
en consecuencia, la nueva forma es MN = o*6(µ## + ∂#). Por lo tanto, derivamos 
MN: 

!)* = o−h(2µ# + ∂) + (µ#2 + ∂#)(−o−h) 
!)* = 2µ#o−h + ∂o−h − µ#2o−h − ∂#o−h 

Después, sustituimos en la ecuación: 
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MN
! + MN = #o*6 

2µ#o*6 + ∂o*6 − µ##o*6 − ∂#o*6 + o*6(µ## + ∂#) = #o*6 

2µ#o*6 + ∂o*6 − µ##o*6 − ∂#o*6 + µ##o*6 + ∂#o*6 = #o*6 

Ordenamos y evaluamos las constantes µ y ∂, 

2µ#o*6 + ∂o*6 = #o*6 

2µ#o*6 = #o*6 							⇒ 										2µ = 1											 ⇒ 														µ =
1
2

 

∂o*6 = 0																			 ⇒ 										∂ = 0 

Por lo tanto, la solución particular es, 

MN =
1
2
##o*6 

Finalmente, la solución general de la ecuación diferencial dada es, 

Me = *o*6 +
1
2
##o*6 = o*6 ?* +

1
2
##A 

 

24. Determinar la solución general de la ecuación diferencial lineal de primer 

orden, 

M! − 3M = cos # 

Solución: 

Se sabe que la ecuación diferencial es lineal de primer orden con coeficientes 
constantes y no homogénea. Vamos a utilizar el método de variación de constante.  

Paso 1: obtener la solución homogénea de, 

M! − 3M = 0																	 ⇒ 																				 M! = 3M 

(M
M
= 3(#																					 ⇒ 																	 ln M = 3# + * 

Por lo tanto, la solución homogénea es, 

Mf = *o&6 
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Paso 2: obtener la solución particular de la ecuación diferencial no homogénea 	
MN
! − 3MN = cos #. El segundo miembro se trata de un factor sinusoidal de la forma  
MN = µ sin # + ∂ cos #. Por lo tanto, derivamos MN: 

!)* = µ cos # − ∂ sin # 

Después, sustituimos en la ecuación: 

MN
! − 3MN = cos # 

µ cos # − ∂ sin # − 3µ sin # − 3∂ cos # = cos # 

Ordenamos y evaluamos las constantes µ y ∂, 

(µ − 3∂) cos # + (−3µ − ∂) sin # = cos # 

(−3µ − ∂) sin # = 0											 ⇒ 								−3µ − ∂ = 0						 ⇒ 							∂ = −3µ		(1) 

(µ − 3∂) cos # = cos # 							⇒ 								µ − 3∂ = 1			(2) 

La ecuación (1) sustituimos en la ecuación (2):   µ − 3(−3µ) = 1 

µ =
1
10

 

El valor de µ sustituimos en la ecuación (1):  

∂ = −3?
1
10
A 							⇒ 								∂ = −

3
10

 

Por lo tanto, la solución particular es, 

MN =
1
10
sin # −

3
10
cos # 

Finalmente, la solución general de la ecuación diferencial dada es, 

Me = *o&6 +
1
10
sin # −

3
10
cos # 

 

25. Determinar la solución general de la ecuación diferencial lineal de primer 

orden, 

M! + M = 4 sin 2# 

Solución: 
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Se sabe que la ecuación diferencial es lineal de primer orden con coeficientes 
constantes y no homogénea. Vamos a utilizar el método de variación de constante.  

Paso 1: obtener la solución homogénea de, 

M! + M = 0																	 ⇒ 																				 M! = −M 

(M
M
= −(#																	 ⇒ 																	 ln M = −# + * 

Por lo tanto, la solución homogénea es, 

Mf = *o*6 

Paso 2: obtener la solución particular de la ecuación diferencial no homogénea 	
MN
! + MN = 4sin 2#. El segundo miembro se trata de un factor sinusoidal de la forma  
MN = µ sin 2# + ∂ cos 2#. Por lo tanto, derivamos MN: 

!)* = 2µ cos 2# − 2∂ sin 2# 

Después, sustituimos en la ecuación: 

MN
! + MN = 4sin 2# 

2µ cos 2# − 2∂ sin 2# + µ sin 2# + ∂ cos 2# = 4 sin 2# 

Ordenamos y evaluamos las constantes µ y ∂, 

(2µ + ∂) cos 2# + (µ − 2∂) sin 2# = 4 sin 2# 

(2µ + ∂) cos 2# = 0																	 ⇒ 								2µ + ∂ = 0						 ⇒ 							∂ = −2µ					(1) 

(µ − 2∂) sin 2# = 4 sin 2# 					⇒ 								µ − 2∂ = 4						(2) 

La ecuación (1) sustituimos en la ecuación (2):   µ − 2(−2µ) = 1 

µ =
1
5

 

El valor de µ sustituimos en la ecuación (1):  

∂ = −2?
1
5
A 							⇒ 								∂ = −

2
5

 

Por lo tanto, la solución particular es, 

MN =
1
5
sin 2# −

2
5
cos 2# 
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Finalmente, la solución general de la ecuación diferencial dada es, 

Me = *o*6 +
1
5
sin 2# −

2
5
cos 2# 

26. Determinar la solución general de la ecuación diferencial lineal de primer 

orden, 

M! + M = 3# + 2  con condición inicial M(0) = 4 

Solución: 

Se sabe que la ecuación diferencial es lineal de primer orden con coeficientes 
constantes y no homogénea. Vamos a utilizar el método de variación de constante.  

Paso 1: obtener la solución homogénea de, 

M! + M = 0																	 ⇒ 																				 M! = −M 

(M
M
= −(#																	 ⇒ 																	 ln M = −# + * 

Por lo tanto, la solución homogénea es, 

Mf = *o*6 

Paso 2: obtener la solución particular de la ecuación diferencial no homogénea 	
MN
! + MN = 3# + 2. El segundo miembro se trata de un factor lineal de la forma  
MN = µ# + ∂. Por lo tanto, derivamos MN: 

!)* = µ 

Después, sustituimos en la ecuación: 

MN
! + MN = 3# + 2 

µ + µ# + ∂ = 3# + 2 

Ordenamos y evaluamos las constantes µ y ∂, 

µ# + (µ + ∂) = 3# + 2 

µ# = 3#									 ⇒ 							µ = 3 

µ + ∂ = 2						 ⇒ 						∂ = −1	 

Por lo tanto, la solución particular es, 
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MN = 3# − 1 

En consecuencia, la solución general de la ecuación diferencial dada es, 

Me = *o*6 + 3# − 1 

Con la condición inicial M(0) = 4 calculamos la constante *: 

4 = *o. + 3(0) − 1				 ⇒ 					* = 5 

Finalmente, la solución es, 

Me = 5o*6 + 3# − 1 

 

27. Determinar la solución general de la ecuación diferencial lineal de primer 

orden, 

M! − M = ""
/
o*6/&  con condición inicial M(0) = −1 

Solución: 

Se sabe que la ecuación diferencial es lineal de primer orden con coeficientes 
constantes y no homogénea. Vamos a utilizar el método de variación de constante.  

Paso 1: obtener la solución homogénea de, 

M! − M = 0																 ⇒ 																				 M! = M 

(M
M
= (#																	 ⇒ 																	 ln M = # + * 

Por lo tanto, la solución homogénea es, 

Mf = *o6 

Paso 2: obtener la solución particular de la ecuación diferencial no homogénea 	
MN
! − MN =

""
/
o*6/&. El segundo miembro se trata de un factor exponencial de la 

forma  MN = µo*6/&. Por lo tanto, derivamos MN: 

!)* = −
1

2
µo−h/2 

Después, sustituimos en la ecuación: 
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MN
! − MN =

11
8
o*6/# 

−
1
2
µo*6/# − µo*6/# =

11
8
o*6/# 

Ordenamos y evaluamos la constante µ, 

−
3
2
µo*6/# =

11
8
o*6/# 									⇒ 							µ = −

11
12

 

Por lo tanto, la solución particular es, 

MN = −
11
12
o*6/# 

En consecuencia, la solución general de la ecuación diferencial dada es, 

Me = *o6 −
11
12
o*6/# 

Con la condición inicial M(0) = −1 calculamos la constante *: 

1 = *o. −
11
12
o. 				⇒ 					* =

23
12

 

Finalmente, la solución es, 

Me = 5o*6 + 3# − 1 

 

28. Determinar la solución general de la ecuación diferencial lineal de primer 

orden, 

M! + 3M = sin 3#  con condición inicial M(0) = 1 

Solución: 

Se sabe que la ecuación diferencial es lineal de primer orden con coeficientes 
constantes y no homogénea. Vamos a utilizar el método de variación de constante.  

Paso 1: obtener la solución homogénea de, 

M! + 3M = 0																 ⇒ 																				 M! = −3M 

(M
M
= −3(#																	 ⇒ 																	 ln M = −3# + * 
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Por lo tanto, la solución homogénea es, 

Mf = *o*&6 

Paso 2: obtener la solución particular de la ecuación diferencial no homogénea 	
MN
! + 3MN = sin 3#.	El segundo miembro se trata de un factor sinusoidal de la forma  
MN = µ sin 3# + ∂ cos 3#. Por lo tanto, derivamos MN: 

!)* = 3µ cos 3# − 3∂ sin 3# 

Después, sustituimos en la ecuación: 

MN
! + 3MN = sin 3# 

3µ cos 3# − 3∂ sin 3# + 3µ sin 3# + 3∂ cos 3# = sin 3# 

Ordenamos y evaluamos las constantes µ y ∂, 

cos 3# (3µ + 3∂) + sin 3# (3µ − 3∂) = sin 3# 

cos 3# (3µ + 3∂) = 0												 ⇒ 						3µ + 3∂ = 0								 ⇒ 					µ = −∂				(1) 

sin 3# (3µ − 3∂) = sin 3# 			⇒ 						3µ − 3∂ = 1								(2) 

Sustituimos la ecuación (1) en ecuación (2):  

3(−∂) − 3∂ = 1				 ⇒ 					∂ = −
1
6

 

Sustituimos ∂ en la ecuación (1): 

µ =
1
6

 

Por lo tanto, la solución particular es, 

MN =
1
6
sin 3# −

1
6
cos 3# 

En consecuencia, la solución general de la ecuación diferencial dada es, 

Me = *o*&6 +
1
6
sin 3# −

1
6
cos 3# 

Con la condición inicial M(0) = 1 calculamos la constante *: 

1 = *o. +
1
6
sin(0) −

1
6
cos(0) 					⇒ 					1 = * −

1
6
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* =
7
6

 

Finalmente, la solución es, 

Me =
7
6
o*&6 +

1
6
sin 3# −

1
6
cos 3# 

 

29. Determinar la solución general de la ecuación diferencial lineal de primer 

orden, 

M! − 4M = sin 2# + cos 2#  con condición inicial M(0) = 1 

Solución: 

Se sabe que la ecuación diferencial es lineal de primer orden con coeficientes 
constantes y no homogénea. Vamos a utilizar el método de variación de constante.  

Paso 1: obtener la solución homogénea de, 

M! − 4M = 0																 ⇒ 																				 M! = 4M 

(M
M
= 4(#																	 ⇒ 																	 ln M = 4# + * 

Por lo tanto, la solución homogénea es, 

Mf = *o)6 

Paso 2: obtener la solución particular de la ecuación diferencial no homogénea 	
MN
! − 4MN = sin 2# + cos 2#.	El segundo miembro se trata de un factor sinusoidal 

de la forma MN = µ sin 2# + ∂ cos 2#. Por lo tanto, derivamos MN: 

!)* = 2µ cos 2# − 2∂ sin 2# 

Después, sustituimos en la ecuación: 

MN
! − 4MN = sin 2# + cos 2# 

2µ cos 2# − 2∂ sin 2# − 4µ sin 2# − 4∂ cos 2# = sin 2# + cos 2# 

Ordenamos y evaluamos las constantes µ y ∂, 

cos 2# (2µ − 4∂) + sin 2# (−4µ − 2∂) = sin 2# + cos 2# 

cos 2# (2µ − 4∂) = cos 2# 						⇒ 						2µ − 4∂ = 1								(1) 
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sin 2# (−4µ − 2∂) = sin 2# 				⇒ 			−4µ − 2∂ = 1								(2) 

Aplicamos la regla de Cramer para hallar A y después sustituimos en cualesquiera 
de las ecuaciones (1) y (2) para hallar B. 

t 2 −4
−4 −2

u tµ
∂
u = t1

1
u 

µ =
ê1 −4
1 −2

ê

ê 2 −4
−4 −2

ê
=

(1)(−2) − (1)(−4)
(2)(−2) − (−4)(−4)

= −
2
20
									⇒ 								µ = −

1
10

 

De la ecuación (2) se obtiene, 

2∂ = −1 − 4 ?−
1
10
A 								⇒ 								∂ = −

3
10

 

Por lo tanto, la solución particular es, 

MN = −
1
10
sin 2# −

3
10
cos 2# 

En consecuencia, la solución general de la ecuación diferencial dada es, 

Me = *o)6 −
1
10
sin 2# −

3
10
cos 2# 

Con la condición inicial M(0) = 1 calculamos la constante *: 

1 = *o. −
1
10
sin(0) −

3
10
cos(0) 					⇒ 					1 = * −

3
10

 

* =
13
10

 

Finalmente, la solución es, 

Me =
13
10
o)6 −

1
10
sin 2# −

3
10
cos 2# 

 

4.3. Ecuaciones diferenciales lineales de primer orden mediante factor integrante. 

En general una ecuación diferencial lineal (EDL) de primer orden se expresa como, 

(M
(#

+ ú(#)M = ’(#) 
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donde ú(#) y ’(#) son funciones que dependen de la variable independiente. Para 
resolver este tipo de ecuaciones diferenciales, debemos utilizar el método del factor 
integrante. Consideremos a N(#) como una función desconocida de este modo 
tenemos, 

(
(#
(NM) = N

(M
(#

+ M
(N
(#

 

Pero,  

(M
(#

= ’(#) − ú(#)M 

Por lo tanto,  

(
(#
(NM) = N[’(#) − ú(#)M] + M

(N
(#

 

(
(#
(NM) = N’(#) − Nú(#)M + MN′ 

(
(#
(NM) = N’(#) + M[N! − Nú(#)] 

Si, N! − Nú(#) = 0, por lo tanto, se obtiene la solución de la EDL, 

(
(#
(NM) = N’(#) + M(0) 

'((NM) = 'N’(#)(# 

NM = 'N’(#)(# 

M(#) =
1

N(#)
'N(#)’(#)(# + * 

El factor integrante se obtiene de: 

N! − Nú(#) = 0									 ⇒ 										 N! = Nú(#) 

ú(#) =
N!

N
 

Pero,  

(
(#
(ln N) =

1
N
∙ N! =

N!

N
 



269 

Finalmente, el factor integrante es, 

ú(#) =
(
(#
(ln N) 

'ú(#)(# = lnN 

o∫k(6)X6 = oM@ 4 

N(#) = o∫k(6)X6 

Para resolver este tipo de ecuaciones diferenciales, se dan estos 4 pasos: 

Paso 1: escribimos la EDL en su forma estándar o canónica  

(M
(#

+ ú(#)M = ’(#) 

Paso 2: calculamos el factor integrante N(#) dada por, 

N(#) = o∫k(6)X6 

Paso 3: multiplicamos la ecuación en forma estándar por N(#) y, si recordamos que 
el extremo izquierdo es solo X

X6
[N(#)M], obtenemos, 

N(#)
(M
(#

+ N(#)ú(#)MÚÛÛÛÛÛÛÙÛÛÛÛÛÛı = N(#)’(#) 

(
(#
[N(#)M] = N(#)’(#) 

Paso 4: Integramos la última ecuación y obtenemos M(#) dividiendo porN(#) para 
obtener, 

M(#) =
1

N(#)
'N(#)’(#)(# + * 

A continuación, se presentan ejercicios resueltos mediante el uso del factor 
integrante. 

30. Usando el método del factor integrante determine la solución de la ecuación 

diferencial lineal de primer orden, 

#M! + 3M = #& con condición inicial M(1) = 0.5 

Solución: 
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Paso 1: a la EDL la dividimos para # y expresamos su forma estándar, 

M! +
3
#
M = ## 

Paso 2: de la forma estándar se sabe que ú(#) = &
6
 y calculamos el factor integrante. 

N(#) = o∫k(6)X6 = o∫
&
6X6 = o&∫

X6
6 = o& M@ 6 = oM@ 6

!  

N(#) = #& 

Paso 3: multiplicamos el factor integrante N(#) a la EDL en su forma estándar,  

#& ∙ M! + #& ∙
3
#
M = #& ∙ ## 

Ordenando lo anterior se puede observar que la expresión es la solución de la 
derivada del producto de dos funciones,  

#& ∙ M! + 3##MÚÛÛÛÙÛÛÛı
X
X6[6

!A]

= #' 

(
(#
[#&M] = #' 

Paso 4: integramos la última expresión y obtenemos la solución general de la EDL, 

'((#&M) = '#'(# 								⇒ 									 #&M =
1
6
#( + * 

M =
1
6
#(

#&
+
*
#&

 

M =
1
6
#& +

*
#&

 

Dada la condición inicial M(1) = 0.5, calculamos la constante *, 

1
2
=
1
6
(1)& +

*
(1)&

											⇒ 									
1
2
−
1
6
= * 

* =
1
3

 

Finalmente, la solución de la EDL es, 

M =
1
6
#& +

1
3#&
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31. Usando el método del factor integrante determine la solución de la ecuación 

diferencial lineal de primer orden, 

#M! − M = ##o6 con condición inicial M(1) = o − 1 

Solución: 

Paso 1: a la EDL la dividimos para # y expresamos su forma estándar, 

M! −
1
#
M = #o6 

Paso 2: de la forma estándar se sabe que ú(#) = − "
6
 y calculamos el factor 

integrante. 

N(#) = o∫k(6)X6 = o∫*
"
6X6 = o*∫

X6
6 = o* M@6 = oM@ 6

&(  

N(#) = #*" =
1
#

 

Paso 3: multiplicamos el factor integrante N(#) a la EDL en su forma estándar,  

1
#
∙ M! −

1
#
∙
1
#
M =

1
#
∙ #o6 

Ordenando lo anterior se puede observar que la expresión es la solución de la 
derivada del producto de dos funciones,  

1
#
∙ M! −

1
##
MÚÛÛÛÙÛÛÛı

X
X6n

"
6∙Ap

= o6 

(
(#
m
1
#
∙ Mn = o6 

Paso 4: integramos la última expresión y obtenemos la solución general de la EDL, 

'( ?
1
#
∙ MA = 'o6(# 								⇒ 									

1
#
∙ M = o6 + * 

M = #o6 + *# 

M = #(o6 + *) 

Dada la condición inicial M(1) = o − 1, calculamos la constante *, 

o − 1 = 1(o + *) 								⇒ 									* = −1 
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Finalmente, la solución de la EDL es, 

M = #(o6 − 1) 

 

32. Usando el método del factor integrante determine la solución de la ecuación 

diferencial lineal de primer orden, 

M! + 4M = o*6 con condición inicial M(0) = )
&
 

Solución: 

Este problema corresponde a una ecuación diferencial lineal de primer orden con 
coeficientes constantes no homogénea, y se utilizan dos métodos, tales como, 
factor integrante (método 1) y variación de constante (método 2), respectivamente. 

Método 1: FACTOR INTEGRANTE 

Paso 1: la EDL ya está expresada en su forma estándar, 

M! + 4M = o*6 

Paso 2: de la forma estándar se sabe que ú(#) = 4 y calculamos el factor integrante. 

N(#) = o∫k(6)X6 = o∫)X6 = o) ∫X6 

N(#) = o)6 

Paso 3: multiplicamos el factor integrante N(#) a la EDL en su forma estándar,  

o)6 ∙ M! + o)6 ∙ 4M = o)6 ∙ o*6 

Ordenando lo anterior se puede observar que la expresión es la solución de la 
derivada del producto de dos funciones,  

o)6 ∙ M! + 4Mo)6ÚÛÛÛÛÙÛÛÛÛı
X
X6[B

"*∙A]

= o&6 

(
(#
[o)6 ∙ M] = o&6 

Paso 4: integramos la última expresión y obtenemos la solución general de la EDL, 

'((o)6 ∙ M) = 'o&6(# 								⇒ 									 o)6 ∙ M =
1
3
o&6 + * 
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M =
1
3
o*&6 + *o*)6 

Dada la condición inicial M(0) = )
&
, calculamos la constante *, 

4
3
=
1
3
o*. + *o. 						⇒ 					

4
3
−
1
3
= * 

* = 1 

Finalmente, la solución de la EDL es, 

M =
1
3
o*&6 + o*)6 

 

Método 2: VARIACION DE CONSTANTE 

Se sabe que la ecuación diferencial es lineal de primer orden con coeficientes 
constantes y no homogénea. Vamos a utilizar el método de variación de constante.  

Paso 1: obtener la solución homogénea de, 

M! + 4M = 0																 ⇒ 																				 M! = −4M 

(M
M
= −4(#																	 ⇒ 																	 ln M = −4# + * 

Por lo tanto, la solución homogénea es, 

Mf = *o*)6 

Paso 2: obtener la solución particular de la ecuación diferencial no homogénea 	
MN
! + 4MN = o*6 .	El segundo miembro se trata de un factor exponencial de la forma 
MN = µo*6. Por lo tanto, derivamos MN: 

!)* = −µo−h 

Después, sustituimos en la ecuación: 

MN
! + 4MN = o*6 

−µo*6 + 4µo*6 = o*6 

Ordenamos y evaluamos las constantes µ y ∂, 

3µ = 1							 ⇒ 						µ =
1
3
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Por lo tanto, la solución particular es, 

MN =
1
3
o*6 

En consecuencia, la solución general de la ecuación diferencial dada es, 

Me = *o*)6 +
1
3
o*6 

Con la condición inicial M(0) = )
&
 calculamos la constante *: 

4
3
= *o. +

1
3
o. 							⇒ 						

4
3
−
1
3
= * 

* = 1 

Finalmente, la solución de la EDL es, 

M =
1
3
o*&6 + o*)6 

 

Al comparar las soluciones se observa que los dos métodos dan siempre el mismo 
resultado. Aunque esto siempre sucede cuando se tienen ecuaciones diferenciales 
lineales de primer orden con coeficientes constantes. 

 

33. Usando el método del factor integrante determine la solución de la ecuación 

diferencial lineal de primer orden, 

@&#! + 3@## = @ con condición inicial #(2) = 0 

Solución: 

Paso 1: a la EDL la dividimos para @& y expresamos su forma estándar, 

#! +
3@#

@&
# =

@
@&
								⇒ 									 #! +

3
@
# =

1
@#

 

Paso 2: de la forma estándar se sabe que ú(@) = &
=
 y calculamos el factor integrante. 

N(@) = o∫k(=)X= = o∫
&
=X= = o& ∫

X=
= = o& M@ = = oM@ =

!  

N(@) = @& 
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Paso 3: multiplicamos el factor integrante N(@) a la EDL en su forma estándar,  

@& ∙ #! + @& ∙
3
@
# = @& ∙

1
@#

 

Ordenando lo anterior se puede observar que la expresión es la solución de la 
derivada del producto de dos funciones,  

@& ∙ #! + 3@##ÚÛÛÛÙÛÛÛı
X
X=[=

!∙6]

= @ 

(
(@
[@& ∙ #] = @ 

Paso 4: integramos la última expresión y obtenemos la solución general de la EDL, 

'((@& ∙ #) = '@(@ 								⇒ 									 @& ∙ # =
1
2
@# + * 

# =
@#

2@&
+
*
@&

 

# =
1
2@
+
*
@&

 

Dada la condición inicial M(2) = 0, calculamos la constante *, 

0 =
1

2(2)
+

*
(2)&

								⇒ 							−
1
4
=
*
8
								⇒ 							* = −2 

Finalmente, la solución de la EDL es, 

# =
1
2@
−
2
@&

 

 

34. Usando el método del factor integrante determine la solución de la ecuación 

diferencial lineal de primer orden, 

M! + &
6
M + 2 = 3# con condición inicial M(1) = 1 

Solución: 

Paso 1: a la EDL la expresamos en su forma estándar, 

M! +
3
#
M = 3# − 2 
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Paso 2: de la forma estándar se sabe que ú(#) = &
6
 y calculamos el factor integrante. 

N(#) = o∫k(6)X6 = o&∫
X6
6 = o& M@ 6 = oM@ 6

!  

N(#) = #& 

Paso 3: multiplicamos el factor integrante N(#) a la EDL en su forma estándar,  

#& ∙ M! + #& ∙
3
#
M = #& ∙ (3# − 2) 

Ordenando lo anterior se puede observar que la expresión es la solución de la 
derivada del producto de dos funciones,  

@& ∙ M! + 3##MÚÛÛÛÙÛÛÛı
X
X6[6

!∙A]

= (3#) − 2#&) 

(
(#
[#& ∙ M] = (3#) − 2#&) 

Paso 4: integramos la última expresión y obtenemos la solución general de la EDL, 

'((#& ∙ M) = '(3#) − 2#&)(# 								⇒ 									 #& ∙ M =
3
5
#' −

1
2
#) + * 

M =
3
5
## −

1
2
# +

*
#&

 

Dada la condición inicial M(1) = 1, calculamos la constante *, 

1 =
3
5
(1)# −

1
2
(1) +

*
(1)&

								⇒ 							1 −
3
5
+
1
2
= *								 ⇒ 							* =

9
10

 

Finalmente, la solución de la EDL es, 

M =
3
5
## −

1
2
# +

9
10#&

 

 

35. Usando el método del factor integrante determine la solución de la ecuación 

diferencial lineal de primer orden, 

cos # M! + M sin # = 2# cos# # con condición inicial M FE
)
H =

*"'√#E%

&#
 

Solución: 
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Paso 1: a la EDL la expresamos en su forma estándar, 

M! + ?
sin #
cos #

A M = 2# cos # 

M! + (tan #)M = 2# cos # 

Paso 2: de la forma estándar se sabe que ú(#) = tan # y calculamos el factor 
integrante. 

N(#) = o∫k(6)X6 = o∫ qr@6X6 = o* M@(CD> 6) = oM@(CD> 6)
&(  

N(#) = (cos #)*" =
1

cos #
 

Paso 3: multiplicamos el factor integrante N(#) a la EDL en su forma estándar,  

1
cos #

∙ M! +
1

cos #
∙ ?
sin #
cos #

AM =
1

cos #
∙ 2# cos # 

Ordenando lo anterior se puede observar que la expresión es la solución de la 
derivada del producto de dos funciones,  

1
cos #

∙ M! + ?
sin #
cos# #

A M
ÚÛÛÛÛÛÛÙÛÛÛÛÛÛı

X
X6n

"
CD> 6∙Ap

= 2# 

(
(#
m
1

cos #
∙ Mn = 2# 

Paso 4: integramos la última expresión y obtenemos la solución general de la EDL, 

'( ?
1

cos #
∙ MA = '2#(# 								⇒ 									

1
cos #

∙ M = ## + * 

M = ## cos # + * cos # 

Dada la condición inicial M FE
)
H =

*"'√#E%

&#
, calculamos la constante *, 

−15√2Å#

32
= F

Å
4
H
#
cos F

Å
4
H + * cos F

Å
4
H 					⇒ 					

−15√2Å#

32
=
Å#

16
∙
√2
2
+ * ∙

√2
2

 

−15√2Å#

32
−
√2Å#

32
=
√2
2
*																											 ⇒ 					

−√2Å#

2
= 	
√2
2
*									 

* = −Å# 

Finalmente, la solución de la EDL es, 
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M = ## cos # − Å# cos # 

 

4.4. Aplicaciones de ecuaciones diferenciales lineales de primer orden en circuitos 

eléctricos. 

Los componentes básicos de los circuitos lineales son las resistencias (¥), las 
capacitancias (*) y las inductancias (÷). El comportamiento de un circuito 
compuesto únicamente por estos elementos se rige por ecuaciones diferenciales 
con coeficientes constantes. Por ejemplo, el estudio de un circuito RL se basa en la 
resolución de una ecuación diferencial de primer orden. Por este motivo, el circuito 
se denomina "circuito de primer orden". 

Cuando la corriente eléctrica fluye a través de un circuito que contiene estos 
elementos, se produce una caída de voltaje (diferencia o caída de potencial) a través 
de cada uno de ellos, y puede medirse experimentalmente con un voltímetro. 
Posteriormente se mide el voltaje, que tiene como unidad el voltio (V). La caída de 
voltaje a través del elemento # se denota como ⁄6. Para calcular teóricamente estas 
caídas de tensión, se aplican las siguientes 3 reglas: 

a) La caída de voltaje (⁄P) a través de una resistencia es igual al producto de 
la resistencia por la corriente (conocida como ley de Ohm). 

⁄P = Ñ¥ 
b) La caída de voltaje (⁄\) a través de una bobina es igual al producto de la 

inductancia y la variación (instantánea) de la corriente: 

⁄\ = ÷
(Ñ
(@

 

c) La caída de voltaje (⁄b) a través del condensador es igual a la relación entre 
la carga eléctrica (q) y la capacitancia (C): 

⁄b =
’
*

 

Utilizando esta última relación y considerando que la corriente eléctrica, Ñ, es el 
ritmo de cambio de carga en función del tiempo. 

Ñ =
(’
(@

=
(
(@
(*⁄b) = *

(⁄b
(@

 

Las leyes de Kirchhoff de Corriente (LKC) y Voltaje (LKV) permiten traducir en 
ecuaciones el comportamiento de todas estas magnitudes. Puesto que sólo se 
estudia aquí el caso de circuitos sencillos, con elementos en serie, bastará con la 2ª 
ley (LKV) o ley de mallas. Si en un circuito eléctrico se recorre una malla (un camino 
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cerrado), la suma de las caídas de voltaje debe ser cero. Dado que una fuente se 
considera un aumento de voltaje, esta ley puede reformularse diciendo que la suma 
de las caídas de voltaje debe ser igual al voltaje suministrado por la fuente. Si ⁄[(@) 
es la fuente de voltaje, tenemos: 

⁄[ = ⁄P + ⁄\ + ⁄b  

A continuación, se resuelven circuitos RL y RC de primer orden, mientras que los 
circuitos RLC son de segundo orden, pero, no son parte de estudio del texto. Los 
problemas resueltos son tomados de los ejercicios propuestos por (Hayt et al., 
2007). 

 

A continuación, se presenta el desarrollo de ejercicios de circuitos RC y RL de primer 
orden mediante cualquier método de resolución de ecuaciones diferenciales vistas 
en las secciones previas.  

36. La figura muestra un circuito RL de primer order, se pide determinar (a) la 

corriente Ñ(@) en términos de ¥ y ÷, y (b) Ñ(@) con condición inicial Ñ(0) = 2	•µ 

para ¥ = 4.7	ùΩ y ÷ = 1	˜¯. 

 

Solución: 

(a) Tenemos un circuito RL simple sin fuente de voltaje, con resistencia ¥ y bobina 
(inductor) ÷ en serie. Se sabe que las caídas de voltaje ⁄P = Ñ¥ y ⁄\ = ÷	(Ñ/(@. Por 
lo tanto, aplicamos LKV: 

⁄P + ⁄\ = 0																					 ⇒ 																				Ñ¥ + ÷
(Ñ
(@
= 0 

Esta se expresa como EDL homogénea de coeficientes constantes, por lo tanto:  

(Ñ
(@
+
¥
÷
Ñ = 0 
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Utilizamos el método de separación de variables e integramos. 

'
(Ñ
Ñ
= '−

¥
÷
(@ 																					⇒ 																				 ln Ñ = −

¥
÷
@ + ù 

Despejamos la corriente, en consecuencia, 

Ñ(@) = ùo*
P
\= 

 
(b) Dado que ¥ = 4.7	ùΩ, ÷ = 1	˜¯ y condición inicial Ñ(0) = 2	•µ, calculamos 
primero la constante ù: 

Ñ(0) = 2	•µ										 ⇒ 										2	•µ = *o. 									⇒ 									* = 2	•µ 

y finalmente obtenemos Ñ(@): 

Ñ(@) = 2o*
).,×".!
".&$ =	[•µ] 																⇒ 																Ñ(@) = 2o*).,×".

+=	[•µ] 

 
37. La figura del ejercicio 36 muestra un circuito RL de primer order, determinar el 

valor de la inductancia ÷, si Ñ(0) = 2	•µ, ¥ = 100	Ω e Ñ(50	˜É) = 735.8	˜µ. 

Solución: 

Para este ejercicio se utiliza el valor de la corriente Ñ(@) en términos de ¥ y ÷ 
obtenido en el ejercicio 36 inciso (a) de esta sección para sustituir ¥ = 100	Ω. 
Adicional, puede verse que para Ñ(0) = 2	•µ = ù y nos queda, 

Ñ(@) = 2o*
"..
\ =	[•µ] 

También, se sabe que Ñ(50	˜É) = 735.8	˜µ, por lo tanto, 

Ñ(50	˜É) = 2 × 10*&o*
"..
\ ('.	t[) 

735.8 × 10*( = 2 × 10*&o*
"..u'.×".&$v

\  

367.9 × 10*& = o*
'×".&!

\  

Finalmente, aplicando propiedades de logaritmo natural obtenemos la inductancia 

÷, 
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ln(0.3679) = ln o*
'×".&!

\ 											⇒ 													−1 = −
5 × 10*&

÷
 

÷ = 5	•¯ 

 
38. La figura muestra un circuito RC de primer order, de pide determinar (a) el 

voltaje ,(@) en términos de ¥ y *, (b) ,(@) con condición inicial ,(0) = 45	⁄ 

para ¥ = 100	‘Ω y * = 1	˜%, y (c) ,(20) e Ñ(20). 

  

Solución: 

(a) Tenemos un circuito RC simple sin fuente de voltaje, con resistencia ¥ y capacitor 
* en serie. En el nodo superior (véase la figura) salen las corrientes Ñb  e ÑP. Por lo 
tanto, aplicamos LKC: 

Ñb + ÑP = 0																					 ⇒ 																				*
(,
(@
+
,
¥
= 0 

La última expresión es la EDL homogénea de 
coeficientes constantes, en consecuencia: 

(,
(@
+

1
¥*

, = 0 

Utilizamos el método de separación de variables e 
integramos. 

'
(,
,
= '−

1
¥*

(@ 																					⇒ 																				 ln , = −
1
¥*

@ + ù 

Despejamos el voltaje, en consecuencia, 

,(@) = ùo*
"
Pb= 
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(b) Dado que ¥ = 100	‘Ω y * = 1	˜% y condición inicial ,(0) = 45	⁄, calculamos 
primero la constante *: 

,(0) = 45	⁄										 ⇒ 										45 = ùo. 									⇒ 									ù = 45	⁄ 

y finalmente ,(@): 

,(@) = 45o
* "
("..×".$)(".&$)=	[•µ] 

,(@) = 45o*..."=	[⁄] 

 
(c) Nos piden ,(20) e Ñ(20), esto indica que evaluamos ,(@) e Ñ(@) cuando @ = 20	É. 
Primero evaluamos ,(20), 

,(20) = 45o*..."(#.) = 45o*..# = 45(0.819) 

,(20) = 36.843	[⁄] 

y finalmente, mediante ley de ohm obtenemos Ñ(20), 

Ñ(20) =
,(20)

100 × 10(
=

36.843
100 × 10(

 

Ñ(20) = 36.843 × 10/ = 368.43	1µ 

 
39. La figura del ejercicio 38 muestra un circuito RC de primer order, determinar 

el valor de la resistencia ¥, si se sabe que * = 100	ú%, ,(0) = 1.5	⁄, y 

,(2	1É) = 100	•⁄. 

Solución: 

Para este ejercicio se utiliza el valor del voltaje ,(@) obtenido en el ejercicio 38 inciso 
(a) de esta sección para sustituir * = 100	ú%. Adicional, puede verse que para 
,(0) = 1.5	⁄ = ù y nos queda, 

,(@) = 1.5o
* "
P("..×".&(%)= 

También, se sabe que ,(2	1É) = 100	•⁄ = 0.1	⁄, por lo tanto, 

,(2	1É) = 1.5o*
".(,
P u#×".&+v 
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0.1
1.5

= o*
#.
P  

Finalmente, aplicando propiedad de logaritmo natural obtenemos la resistencia ¥, 

ln(0.0667) = ln o*
#.
P 											⇒ 													−2.708 = −

20
¥

 

¥ = 7.386	Ω	 

 

40. Después de permanecer por horas en la configuración indicada, el interruptor 

del circuito de la figura se cierra en @ = 0. Determinar (a) Ñ\(5	˜É) y (b) 

Ñ[w(5	˜É). 

 

Solución: 

Para resolver este tipo de circuitos RL con interruptor, se debe analizar cuando el 
switch está abierto y cerrado. Cuando el switch está abierto (@ = 0*) la bobina ÷ 
queda en cortocircuito y obtenemos la corriente inicial Ñ\(0). La figura muestra el 
circuito cuando el switch está abierto. 

Aplicamos ley de ohm para obtener 
Ñ\(0), en consecuencia, 

Ñ\(0) =
9

1ù + 1ù
=
9
2ù

 

Ñ\(0) = 4.5	•µ 
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Cuando el switch se cierra nos queda en corto el lado izquierdo del circuito, 
quedando un circuito RL de primer orden sin fuente de voltaje, tal como se muestra 
en la figura. 

  

En el ejercicio 36 se da los pasos para resolver circuitos RL de primer orden sin 
fuentes de accionamiento. Aplicando LKV, separando variables e integrando 
obtenemos Ñ\: 

⁄P + ⁄\ = 0																					 ⇒ 																				 Ñ\¥ + ÷
(Ñ\
(@

= 0 

(Ñ\
(@

+
¥
÷
Ñ\ = 0																 ⇒ 																		'

(Ñ\
Ñ\

= '−
1 × 10&

4 × 10*&
(@ 

ln Ñ\ = −250 × 10&@ + ù															 

Despejamos la corriente, por lo tanto, 

Ñ\(@) = ùo*#'.×".
!= 

 
Dado que en condiciones iniciales Ñ\(0) = 4.5	•µ, nos queda, 

Ñ\(0) = 4.5	•µ										 ⇒ 								4.5	•µ = ùo. 									⇒ 									ù = 4.5	•µ 

En consecuencia, Ñ(@) es, 

Ñ\(@) = 4.5o*#'.×".
!=	[•µ] 

(a) Para @ = 5	˜É, se obtiene, 

Ñ\(5	˜É) = 4.5o*#'.×".
!u'×".&$v	[•µ] = 4.5o*".#'	[•µ] 
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Ñ\(5	˜É) = 4.5(0.287)	[•µ] 

Ñ\(5	˜É) = 1.289	[•µ] 

 

(b) Para @ = 5	˜É, se obtiene, 

Ñ6 = Ñxy(5	˜É) + Ñ\(5	˜É) 										⇒ 									
9
1ù

= Ñxy(5	˜É) + 1.289	•µ 

Ñxy(5	˜É) = 9	•µ − 1.289	•µ 

Ñxy(5	˜É) = 7.711	•µ 

 

41. Luego de estar cerrado durante largo tiempo, el interruptor del circuito de la 

figura se abre en @ = 0. Determinar (a) Ñ\(@) para @ > 0, (b) Ñ\(10	•É) y (c) 

calcular @" si Ñ\(@") = 0.5Ñ\(0). 

  

Solución: 

Este tipo de circuitos RL con interruptor 
es analizado cuando el switch 
inicialmente estaba cerrado durante 
largo tiempo, y a posteriori se analiza 
cuando se abre. Dado que el switch está 
cerrado (@ = 0*) obtenemos la 
corriente inicial Ñ\(0), tal como se 
observa en el circuito de la figura. 
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Ñ\(0) =
100
50

= 2	µ 

(a) Cuando el switch se abre nos queda abierto el ramal central del circuito, 
quedando un circuito RL de primer orden sin fuente de voltaje, tal como se muestra 
en la figura. La resistencia equivalente es la sumatoria de las tres resistencias en 
serie, ¥[ = 20 + 10 + 50 = 80	Ω. 

 

En el ejercicio 36 se da los pasos para resolver circuitos RL de primer orden sin 
fuentes de accionamiento. Aplicando LKV, separando variables e integrando 
obtenemos Ñ\: 

⁄P + ⁄\ = 0																					 ⇒ 																				 Ñ\¥[ + ÷
(Ñ\
(@

= 0 

(Ñ\
(@

+
¥[
÷
Ñ\ = 0																 ⇒ 																		'

(Ñ\
Ñ\

= '−
80
0.2

(@ 

ln Ñ\ = −400@ + ù															 

Despejamos la corriente, por lo tanto, 

Ñ\(@) = ùo*)..= 

Dado que en condiciones iniciales Ñ\(0) = 2	µ, nos queda, 

Ñ\(0) = 2	µ										 ⇒ 								2	µ = ùo. 									⇒ 									ù = 2	µ 

En consecuencia, Ñ(@) es, 

Ñ\(@) = 2o*)..=	[µ] 
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(b) Para @ = 10	•É, se obtiene, 

Ñ\(10	•É) = 2o*)..u".×".
&!v	[µ] = o*)	[µ] 

Ñ\(10	•É) = 2(0.018)	[µ] 

Ñ\(5	˜É) = 0.03663	µ = 36.63	[•µ] 

 
(b) Para Ñ\(@") = 0.5Ñ\(0), se obtiene @", 

Ñ\(@") = 0.5Ñ\(0) 												⇒ 												2o*)..=( = 0.5(2) 

2
o)..=(

= 1																								 ⇒ 												2 = o)..=(  

Aplicamos propiedades de logaritmo natural para obtener @", 

ln 2 = ln o)..=( 															⇒ 										0.693 = 400@" 

@" = 0.00173	É = 1.73	•É 

 

42. En el caso del circuito que se muestra en la figura, (a) escribir la ecuación 

diferencial que describe la tensión ,P en el resistor para @ > 0, (b) resolver la 

ecuación característica, y (c) calcular ,P justo antes de que se abra el 

interruptor, exactamente después de que se abra el interruptor en @ = 1	É. 

  
Solución: 
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(a) El circuito de la figura tiene la misma configuración del ejercicio 41 cuando el 
interruptor está abierto, los valores de las resistencias y bobina son diferentes. La 
resistencia equivalente en serie es ¥[ = 5	Ω. De manera similar al ejercicio 41, 
aplicamos LKV: 

⁄P + ⁄\ = 0	 

Ñ\¥[ + ÷
(Ñ\
(@

= 0 

Pero, por ley de ohm:  

,P = −Ñ\¥ = −2Ñ\ 

Ñ\ = −
,P
2

 

Por lo tanto, 

( F−
,P
2 H

(@
+
5
5
F−

,P
2
H = 0												 ⇒ 													

(,P
(@

+ ,P = 0	 

(b) de la ED calculamos ,P mediante separación de variables e integramos, 

'
(,P
,P

= '−(@ 												⇒ 												 ln ,P = −@ + ù		 

,P = ùo*= 

 
(c) la ED obtenida en el inciso 
(a) describe la tensión ,P, pero, 
depende de Ñ\. Es decir, que 
primero calculamos Ñ\ justo 
antes de abrir el interruptor 
para @ = 0*. La figura muestra 
el circuito cuando el 
interruptor está cerrado y 
aplicamos ley de ohm para 
obtener Ñ\(0) = Ñ\(0*) =
Ñ\(0%), por lo tanto, 

Ñ\(0) =
10
2
= 5	µ 
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Este valor Ñ\(0) después que se abre el interruptor es Ñ\(0%), y se sabe del inciso (a) 
que ,P(0%) = −2Ñ\(0%) = −2(5) = −10	⁄, entonces, ,P(0%) = ù. Por lo tanto, 

,P(@) = ,P(0%)o*= 													⇒ 														 ,P(@) = −10o*= 

 
No confundir que ,P(0*) sea la condición inicial de la ED obtenida en el inciso (a), 
por lo tanto, aplicamos divisor de voltaje, 

,P(0*) =
20
3
	[⁄] = 6.667	[⁄] 

 
Y finalmente calculamos ,P(1), 

,P(1) = −10o*" = −
10
o

 

,P(1) = −3.679	[⁄] 

 
43. Determinar ,b(@) e Ñb(@) para el circuito de la figura. 

 

Solución: 

Sabemos que este tipo de problemas son resueltos cuando está cerrado y abierto el 
interruptor, y viceversa. Primero analizamos cuando el interruptor está cerrado 
(véase figura), y el capacitor queda en circuito abierto para calcular el voltaje en 
condiciones iniciales. Observamos en el ramal de 20	ùΩ que la corriente de circuito 
abierto Ñb(0) = 0	µ. Aplicamos análisis de mallas en el ramal del interruptor para 
determinar Ñ[(0).  

10 = 5ùÑ[(0) + 10)Ñ[(0) 													⇒ 														10 = 15ùÑ[(0) 
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Ñ[(0) = Ñ[(0*) =
2
3
	•µ 

 

Ahora aplicamos análisis de mallas en el ramal abierto para determinar ,b(0), 

10)Ñ[(0) = 20ùÑb(0) + ,b(0) 

10) ?
2
3
× 10*&A = ,b(0) 

,b(0) = ,b(0*) =
20
3
	⁄ = 6.667		⁄ 

 
Ahora se analiza cuando abrimos el interruptor (ver figura). Al abrir el switch la 
corriente Ñ[ = 0	µ y la fuente dependiente sería 0	⁄, lo que nos quedaría un circuito 
RC de primer orden sin fuente de voltaje en condiciones iniciales ,b(0) = 6.667	⁄.  

 

En el ejercicio 38 se aprendió a resolver este tipo de circuitos, por lo tanto, 
aplicamos LKC: 

Ñb + ÑP = 0																					 ⇒ 																				*
(,
(@
+
,
¥
= 0 

(,
(@
+

1
¥*

, = 0														 ⇒ 																				'
(,
,
= '−

1
(20 × 10&)(2 × 10*()

(@ 
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ln , = −
10&

40
@ + ù								 ⇒ 																		,(@) = ùo*#'= 

Sabemos que ,b(0) = ù = 6.667	⁄, por lo tanto, 

,(@) = 6.667o*#'=	[⁄] 

 Por ley de ohm, determinamos Ñb, 

Ñb =
,b
20ù

=
6.667o*#'=

20 × 10&
 

Ñb = 0.333o*#'=	[•µ] 

 

44. Determinar ,(@) e Ñ(@) para el circuito de la figura. 

 

Solución: 

La figura muestra el circuito cuando el interruptor está abierto y, además, el 
capacitor de 20	˜% queda en circuito abierto con lo que calculamos ,(0) en 
condiciones iniciales. Observamos en el ramal de 50	Ω y 20	˜% que la corriente para 
circuito abierto es, Ñb(0) = 0	µ.  

En el nodo ,6 aplicamos LKC, 

Ñ(0) + Ñb(0) = 0.1 

Ñ(0) = 0.1 

Del lado izquierdo del circuito 
aplicamos LKV para determinar el 
voltaje en condiciones iniciales, 

,(0) + 50Ñb(0) = 200Ñ(0) 
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,(0) = 200(0.1) 

,(0) = ,(0*) = 20	⁄ 

Ahora, analizamos cuando el interruptor se cierra (ver figura izquierda). 
Observamos que el nodo ,6 provoca que la corriente Ñ(@) = 0, y la resistencia se 
anula debido a que está en corto. La figura derecha muestra el circuito RC de primer 
orden equivalente, por lo tanto, aplicamos LKC. 

 

Ñb + ÑP = 0																					 ⇒ 																				*
(,
(@
+
,
¥
= 0 

(,
(@
+

1
¥*

, = 0														 ⇒ 																				'
(,
,
= '−

1
(50)(20 × 10*()

(@ 

ln , = −
10-

1000
@ + ù								 ⇒ 																		,(@) = ùo*".

$= 

Sabemos que ,b(0*) = ù = 20	⁄, por lo tanto, 

,(@) = 20o*".
$=	[⁄] 

La corriente Ñ(@) ya fue explicada, finalmente, 

Ñ(@) = 0	[µ] 
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investigación y desarrollo en un sistema de generación termoeléctrico, donde trabajé creando 
la ecuación de un dispositivo de generación termoeléctrica.
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fundamentos de redes, propagación de señales y diseño de circuitos. A lo largo de su 
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fortaleciendo su dominio en temas actuales como la implementación de redes ópticas, 
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