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Capitulo 1:
Integrales
indefinidas y
definidas




1.1. Integrales indefinidas de funciones algebraicas y trigonométricas.

En calculo diferencial nos han dado una funcién, f(x), y nos han preguntado cual era
la derivada de esta funcidn. A partir de esta seccién se dara la vuelta a las cosas.

Definicidn: Dada una funcidn, f(x), una antiderivada de f(x) es cualquier funcién
F(x) tal que:

F'(x) = f(x)

Si F(x) es cualquier antiderivada de f(x) entonces la antiderivada mas general de
f(x) se llama integral indefinida y se denota como,

ff(x)dx =Fx)+C

donde, C es una constante arbitraria.

En esta definicién el [ se denomina simbolo de la integral, f(x) se denomina el
integrando, x se denomina variable de integracién y el valor " ¢ " se denomina la
constante de integracion.

En ocasiones, se dird simplemente "integral" en lugar de "integral indefinida" (o
"integral definida", cuando se trate del tema). A partir del contexto del problema es

evidente que se trata de una integral indefinida (o una integral definida).

El proceso de encontrar la integral indefinida se llama integracién o integracion de
f(x). En caso de necesitar especificar la variable de integracion, se dird que se esta
integrando f(x) con respecto a x. A continuacién, se denotan los teoremas de las
integrales indefinidas:

Teorema 1.1:

fdv=v+C

Teorema 1.2:

fadvzafdvzav+(]
Teorema 1.3:Si f; y f, estdn definidas en el mismo intervalo entonces,

[1h.60 £ £ = [ fidr £ [ fGodx



Teorema 1.4: Si n es un numero racional,

n+1 1
fv"dvz +C= v+ Csin# -1
n+1 n+1

En los siguientes ejercicios, se aplica el Teorema 1.3 para descomponer cada integral
en la suma o diferencia de integrales individuales, lo que permite abordar cada
término por separado. Posteriormente, se utilizan los teoremas 1.4 y 1.2 para
evaluar las integrales indefinidas de manera inmediata. Evaluar las siguientes
integrales indefinidas:

1. ] (x? = 3)dx
o2 -3

Solucion:

1
f(xz—3)dx=fx2dx—3fdx=§x3—3x+C

2.[(3x5 — 2x3)dx
Solucién:

1 1
f(3x5—2x3)dx=3fx5dx—2fx3dx=3-€x6—2-1x4+6

1 1
=§X6—§X4+C

3.f(él-x3 —3x% + 2x)dx
Solucién:

f(4-x3—3x2 +2x)dx=4fx3dx—3fx2dx+2fxdx

1 1 1
=4--Zx4—3-§x3+2-§x2+6=x4—x3+x2+C

1 1
4, | (=t* —t3—t)dt
[ Ge+3



Solucion:

1 1 1 1
—t* —t3—t)dt=—ft4dt —ft3dt—ftdt
f(z +4 2 +4
11 11 1 1 1 1
==ttt — -t + Cl= =t + =t —<t2 4+ C
25 +44 2 + 10 +16 2 +

5.f(5t3 —10t7% + 4)dt
Solucion:

f(5t3 —10t™%+4)dt =5 f t3dt — 10f t=edt +4 | dt

t*+ 2t +4t+C

B U S—

=5 1t4 10 1t‘5+4t+C—
=57 — =

6. f(l + 6w? — 10w*)dw
Solucion:

f(l + 6w? — 10wH)dw = f dw + 6f w2dw — 10 f widw

1 1
=W+6'§W3—10'§W5+C=W+2W3—2W5+C

7| (Vo + V) dx

Solucion:

f(\/F+ i/;) dx = f(x3/2 +x%/3)dx = fx3/2dx +fx2/3dx

2 3
=§x5/2—§x5/3+C

1 1
8.f(x4—§x3+zx—2)dx
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Solucion:

f(x4—lx3 +1x_2)dx—fx4dx—lfx3dx+lfxdx—2fdx
2 4 N 2 4

LSS O SURNS S5 SR
TR TR Tyt T

1 1 1
=§x5—§x4+§x2—2x+6

9.f(y3 + 1.8y% — 2.4y)dy

Solucion:
f(y3 + 1.8y2 — 2.4y)dy = fy3dy + 1.8fy2dy - 2.4fydy

1 *+1.8 24l 2+C
TgY Aoy T ety

1
= Zy‘* +0.6y3 —1.2y* +C

10. f(u +4)2u + 1)du
Solucion:

f(u+4)(2u+1)du=f(2u2+9u+4)du=2fu2du+9fudu+4fdu

=21 49 . 2+4 +C—2 3+9 2+4u+C
= 3u Zu u —3u 2u u

11._{(4 jﬂ6u> du

Solucion:

4 + 6u 4 6u
f( N )du=f(m+m)du=4fu‘1/2du+6fuu‘1/2du
u

2
=4fu‘1/2du+6fu1/2du=4-2u1/2 +6-§u3/2+C

11



44+ 6u
f( N )du=8u1/2+4u3/2+C=8\/§+4\/u3+C
u

7 1
12:f(3Vx34———4————)dx
x5 6vx

Solucion:

7 1 1

34 3 )d :f(3 3/4 7 =53 = —1/2)d

f( VX +x5+6\/§ X X + 7x +6x X
1

= fo3/4dx+7fx‘5dx+gfx‘1/2dx

4 1 1
=3'7X7/4+7'_—4X_4+E‘ZX1/2+C

12 7 1
= 73(7/4 —ZX_4 +§X1/2 +C

13 f *(V + Yx)dx
Solucion:

fx(i/x+ Vx)dx = fx(x1/3 +xY*)dx = fxxl/gdx +fxx1/4dx

= fx4/3dx+fx5/4dx =Ex7/3 +ix9/4+C
7 9

14. f(u + V) (4 —u?)du
Solucion:
f(u +Yu)(4 —uP)du = f(u +ul?)(4 —u)du
= f(4u —ud +4ul? —u’?)du
=4-fudu—fu3du+4fu1/3du—fu7/3du
1 3

1 3
=4.= 2 _ 4+4,_ 4/3 _ 10/3_|_C
2% Tt T

12



1 3
u+ Yu)(4 — uddu = 2u® — —ut + 3ut — —Yul® + ¢
( 4 10

Is f27t3_1dt
' Ve

Solucion:

27¢3 — 1 27¢3 1
e PR o — 34-1/3 94 _ | $+-1/3
f 7 dt_f<t1/3 t1/3>dt 27ftt dt ft dt

3 3
= 27[ t8/3dt — f tY3dt = 27 - ﬁt““ —§t2/3 +C

81 3
:_t11/3 __t2/3 I
11 2 *

x3 — 2/x
16.[—\/_dx

X

Solucion:

2x1/2

fx —2\/§ %—

)dx = f(x2 —2x7Y2)dx

1
fxzdx— fx‘l/zdx =§x3 —2-2x2 4 ¢
1
3

—4/x+C

En los ejercicios resueltos (1 al 16) se aplicaron de manera inmediata los teoremas
1.1 a 1.4 de integrales indefinidas sin utilizar algiin método o técnica de integracion.
Mds adelante se analiza el método de cambio de variable, y en el capitulo 2 se
estudian las técnicas de integracién. A continuacidn, se presentan ejercicios de
aplicacién basica de la antiderivada para calcular la ecuacién de una curva en

cualquier punto.

17.En el punto (3, 2) esta ubicado en una curva y en cualquier punto (x,y) en la
curva, la tangente tiene una pendiente igual a 2x — 3. Determine la ecuacion de

la curva.

13



Solucion:

Recordemos que en calculo diferencial la tangente a una curva en cualquier punto
(x,y) representa a la derivada en ese punto, por tanto,

Y3 dy = (2x — 3)d
a—x— > y = (2x — 3)dx

Esta ultima expresion se denomina ecuacién diferencial (en el capitulo 4
profundizaremos en las ecuaciones diferenciales de primer orden). A continuacion,
integramos ambas partes como integrales indefinidas; por lo tanto:

fdy= f(Zx—3)dx

1
Y:Zdex—3fdx:2-§x2—3x+C

y=x2-3x+C

En esta ultima expresion se sustituye el punto (3, 2) que estd ubicada en la curva,
en consecuencia, calculamos la constante C,

2=32-303)+C = C=2

Finalmente, la ecuacion de la curva queda definida como,

y=x%2—-3x+2

18. La pendiente de la recta tangente en cualquier punto (x, y) de una curva es 3v/x.
Si el punto (9, 4) esta en la curva, obtenga una ecuacidn de dicha curva.

Solucion:

Sabemos que la tangente a una curva en cualquier punto (x,y) representa a la
derivada en ese punto, por tanto:

d

_dic] =3x = fdyz 3fx1/2dx
2

y=3~§x3/2+C

y=2/x3+C

14



Dado que la curva pasa por el punto (9, 4), sustituimos estas coordenadas en la
expresién anterior:

4=2(9)+c = 4=2(3)3+C
C=-50

Finalmente, la ecuacion de la curva queda definida como,

y =2/x3 =50

19. Los puntos (—1,3) y (0, 2) estan en una curva y en cualquier punto (x,y) en
lacurvay' = 2 — 4x. Determine la ecuacidn de la curva.

Solucién:

Se sabe que la curva en cualquier punto (x, y) representa a la segunda derivada en
ese punto, por tanto,

" &’y 2—4 d(dy) 2—4
= ——= —_ = —_— | = -

Y dx? X dx \dx x

dy’'

—=2—-4

dx x

Despejando,

dy' = (2 —4x)dx

Aplicamos integraciéon en ambas expresiones para obtener la tangente a la curva
(primera derivada de y), en consecuencia:

1
fdy'=f(2—4-x)dx > y’=2x—4~zx2+C

y' =2x—-2x2+4+C

Nuevamente, aplicamos integraciéon en ambas expresiones para calcular la ecuacion
de la curva, por tanto:

1 1
fdy=f(2x—2x2+6)dx = y=2'§x2—2'§x3+6x+61

y=x2—zx3+Cx+C
3 1

15



Ahora procedemos a evaluar los puntos (—1,3) y (0, 2) que forman parte de una

curva. Primero evaluamos el punto (—1,3) y sustituimos en la curva "y" para
determinar el valor de las constantes C y C;,

3= (—1)? —%(—1)3 +C(-1)+¢

2 4
3—1—§=—C+C1 = —C+61=§ (1)
Ahora, evaluamos el punto (0, 2)

2
3 =(0)2 —§(0)3 +C(0) + C;
3=(,
Sustituyendo el valor de la constante C; en la ecuacién (1), queda:

C+3 : C
— = — = = —
3 3

Finalmente, la ecuacion de la curva queda definida como:

_ z_z 3 E
y=x 3x +3x+3

20. Después de t afios la poblacién de cierta ciudad crece al ritmo de 500 + 6004/t
por afio. La poblacién actual es de 120,000 personas. Determine la poblacién
dentro de 4 afios.

Solucién:

Se sabe que el crecimiento poblacional con relacién al tiempo se define como, P’ (t)
y segun el dato del problema es 500 + +/t. Como condicién inicial se tiene que P(0)

es la poblacién actual de 120,000 personas. Por lo tanto:

dP(t
d—i) =500 + 600/t

P(t) = f(500 + 600\/f)dt = 500[ dt + 600[ 12 gt

2
P(t) = 500t + 600 - §t3/2 + C =500t +400t3/2 + C

Si P(0) = 120000, se obtiene el valor de la constante C,
120000 = C

16



En consecuencia, la expresion general que describe la poblaciéon en funcién del
tiempo, para distintos intervalos, es:

P(t) = 500t + 400t3/% + 120000
Finalmente, la poblacidn dentro de 4 afios es:
P(4) = 500(4) + 400(4)3/? + 120000

P(4) = 2000 + 3200 + 120000

P(4) = 125200

Los teoremas 1.5 a 1.10 permiten evaluar las integrales indefinidas de funciones
trigonométricas y las que dan como resultado funciones trigonométricas inversas.
Estos teoremas son consecuencia directa de los teoremas de derivacion.

Teorema 1.5:

1
fsinavdv = —Ecosav+C

Teorema 1.6:

1
fcosavdv =asinav+C

Teorema 1.7:

1
fsec2 avdv = Etanav +C

Teorema 1.8:

1
fcsc2 avdv = —Ecotav+C

Teorema 1.9:

1
fsecavtanavdv =-—secav+C
a

Teorema 1.10:

1
fcscavcotavdv =——cscav+C
a

Teorema 1.11:

17



Teorema 1.12:

dv 1 v
———=—tan' —+C
a*+v? a a

Teorema 1.13:

f dv 1 _1v+C
. _vz_az—asec "

Para evaluar las integrales indefinidas a veces es necesario el uso de identidades
trigonométricas, tales como,

cscxsinx =1 > cscx = ——
sin x
1
secxcosx =1 > secx =
cosXx
1
cotxtanx =1 > cotx =
tan x
sin x COS X
tanx = ; cotx = —
CcoSs X sinx

sin?x+cos?x=1; tan’x+1=sec’x; cot’x+1=csc’®x

sin2x = 2sinxcosx; %sin X = sin (g) cos (;)

En los siguientes ejercicios se utilizan los teoremas 1.5 a 1.10 de la integracion
indefinida de funciones trigonométricas.

21.[(3 sint — 2 cos t)dt

Solucion:

f(3sint—2cost)dt= 3fsintdt—2fcostdt= —3cost—2sint+C

22. f(S cos x — sinx)dx

Solucion:

f(Scosx—sinx)dx = 5fcosxdx—fsinxdx= —5sinx —cosx + C

18



23. f(él- cscx cotx + 2sec? x)dx
Solucion:

f(4cscxcotx+25ec2x)dx =4fcscxcotxdx+2fsec2xdx

= —4cscx+2tanx + C

24. f(3 csc? x — 5secx tanx)dx
Solucion:

f(3csc2x—55ecxtanx)dx= 3fcsc2xdx—5fsecxtanxdx

= —-3cotx —5secx+C

25. f(Z cot? @ — 3tan? 0)dH

Solucion:

De acuerdo con los teoremas 1.5 a 1.10 no tenemos integrales inmediatas de las
funciones trigonométricas cot? @ y tan? 0, para lo cual seran sustituidas con las
siguientes identidades trigonométricas: cot? 8 = csc?8 — 1ytan? 8 = sec? 9 — 1.
Por lo tanto,

f(Z cot? @ — 3tan? 0)do = 2 f(csc2 6—1do -3 f(sec2 6 —1)do

=2fcsc29d9 —2fd9 —3fsec29d9+3fd9

=—-2cotfd —20 —3tan8+36+C
=—2cotfd —3tanf0+6+C

26 sin (2)cos(2) a0

Solucion:

En este ejercicio observamos que no existe una forma inmediata de evaluar la
integral, para lo cual utilizamos la identidad trigonométrica:

19



n(3)oos(5) = sne
sin E cos E —ESII’I

Por lo tanto,

f(@) (g)de—lf in6do = ! 6+C
sin( > Jcos|> =3 | sin = oS

27. f[12 + csc O (sinf + cscH)]do
Solucion:
f[lZ + csc (sin6 + cscH)]do = f[lZ + (cscOsin @ + csc? 9)]do

De acuerdo con la identidad trigonométrica cscfsinf =1, sustituimos y
evaluamos,

12 + csc 8 (sin @ + csc = 12+ (1 4+ csc = 13 + csc
[ 6 (sin@ 6)]de [ ( 29)]de ( 20)do

=13_{d9+fcsc29d9=139—cot9+C

28. f(Z cost —secttant)dt
Solucion:

f(Zcost—secttant)dt=chostdt—fsecttantdt

= 2sint —sect+C

29. f(secz u+ 7secutanu)du
Solucion:

f(sec2u+7secutanu)du = fseczudu+7fsecutanudu

=tanu + 7secu+ C

20



30. f(csc2 w —sec’ w)dw

Solucion:

f(csczw—seczw)dw =fcsc2wdw—fsec2wd(u =—cotw—tanw + C

31. f(S cosx — 3 cscx cotx)dx
Solucion:

f(8cosx—3cscxcotx)dx = 8fcosxdx—3fcscxcotxdx

=8sinx+3cscx+C

32. f tanx (cotx — cos x)dx
Solucion:
ftanx (cotx — cosx)dx = ftanxcotx dx — f tan x cos x dx

Para la primera y segunda integral utilizamos las identidades trigonométricas,
tanx cotx = 1ytanx = sinx / cos x, por lo tanto, sustituimos y evaluamos,

S

inx )
-cosxdx = | dx— | sinxdx
cosx

ftanx(cotx—cosx)dx =fdx—f

=x+cosx+C

cos3 v + sinv
33.f—dv

cos?v
Solucidn:

Aplicamos la divisidn término por término y simplificamos segin corresponda, en
consecuencia,

cos® v + sinv cos>v  sinv sinv 1
—Zdvz ——+ 5 dv = cosv + . dv
cos?v cos?2v  cos?v COSV COSV
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Pero, recordemos que tanv =sinv /cosv y secv =1/cosv, por lo tanto,
sustituimos y evaluamos,

f cos® v + sinv

dv = | (cosv+tanvsecv)dv = | cosvdv + | tanvsecvdv
cos?v

=sinv+secv+C

3tanf — 4 cos? 0
34.[ do
cos @

Solucion:

Nuevamente, dividimos término a término y simplificamos,
3tan0 — 4 cos? 0 3tanf 4cos?6
f do = f — deo
cos 6 cos 6 cos 6

1
= 3ftan9-—d9 —4fc059d9
cos @

Pero, secd = 1/ cos @, por lo tanto, sustituimos y evaluamos,

f3tan9—4c0529

de =3ftan95ec9d9 —4sinf+C
cos @

= 3secH —4sinf +C

En los siguientes ejercicios de integracidn se emplean los teoremas 1.11 a 1.13 que
dan como resultados funciones trigonométricas inversas.

dx
N

Solucion:

35.

Utilizando el teorema 1.11, deducimos quea =2y v = x

dx | __1x+C
_4_x2—51n >
36 dx
) N5 =2
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Solucion:

Utilizamos el teorema 1.11, paralocuala =V5yv = x

dx
N

dx
37.[2—
X<+

Solucion:

] x
=|sin"!—+C

V5

25

Se utiliza el teorema 1.12, dondea =5yv = x

f dx
x2 4+ 25

-5 “Z4c
—59 3

38[ dx
Jx2+11

Solucion:

Utilizamos el teorema 1.12, dondea = v1lyv = x

f dx 1 tan-1 x +c
= —tan~! —
x2+ 11| V11 V11
dx
39.[—
4xVx? — 16
Solucidn:

Utilizamos el teorema 1.13, dondea = 4yv = x

dx
—— == | —/———==-—-"—5¢
f4x\/x2—16 4) xx2—16 4 4

1 dx

40[ dx
") sxvxZ =21

Solucion:

11

X
1—+C
€%

Se utiliza el teorema 1.13,dondea = v21yv =x

23

= sec‘1x+ C
16 4




f dx _ 1[ dx 1 o x +e
5xvVx?2 —21 5J xVx?2-21 5 \/_ V21
+C

1
= sec -1 X
5v21 V21
7dx
gy, [Y7dx
xVx2—17
Solucidn:

Se utiliza el teorema 1.13, donde a = V7 y v = x

V7dx dx 1 x X
—=\/7f—=\/7-—sec‘1—+(f=sec‘1—+C
xVx% -7 xVx% —17 V7 V7 V7

dx

2x3 —x2+2x+ 4
42[
1+ x2

Solucion:

Se utiliza la divisién larga o sintética que consiste en dividir una funcién polindmica
por un binomio.

2x3 —x*+2x+4 x+1
—2x3 —2x 2x —1
—x2 /] +4
x? +1
// 5

2x3 —x2+2x+ 4 5
f dx=f(2x—1+—)dx
1+ x2

1+ x2
dx
=2fxdx—fdx+5f—
1+ x2

1
=Z-Exz—x+5tan‘1x+C=x2—x+5tan‘1x+C

x6
43. | ——d
fl%—x2 x

Solucion:

24



Se utiliza la divisidn sintética segun lo desarrollado en el ejercicio 42.

x x?2+1
—x6 — x4 x*—x*+1
/] x*+x?
/] x*
—x% -1
// —1

f—x6 d —f(‘* 2pq- 1 )
1+ x2 =g\ 1+ x2 x

49, 2 _
f dx f dx+fdx f1+x2

1 1
== 5—§x3+x—tan‘1x+C

vl

1.2. Integrales indefinidas por el método de sustitucion o cambio de variable.

La integracién por sustitucién (conocida como sustitucién en u) es una técnica para
resolver algunas funciones compuestas. El método se basa en cambiar la variable de
la integracidn para obtener una integral indefinida simple. El siguiente teorema
muestra cémo funciona la técnica de sustitucién o cambio de variable.

Teorema 1.14:

Sea g una funcién diferenciable en un intervalo I donde la derivada es continua. Sea
f continua en el intervalo | que contiene el rango de la funcién g. Si F es una
antiderivada de la funciéon F en J, entonces:

[ rlae)g coax = F(gw) 4. xer

Pasos de la integracién por sustitucién:
Paso 1: elegir una nueva variable u.
Paso 2: determinar el valor de du.

Paso 3: efectuar la sustitucion, es decir, eliminar todas las apariciones de x (o de
cualquiera otra variable) en la integral, de modo que ésta quede expresada
Unicamente en términos de u.

Paso 4: evaluar la nueva integral.

Paso 5: devolver la evaluacién a la variable inicial x (o cualquier otra variable inicial).
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En los siguientes ejercicios se evaluan las integrales indefinidas mediante los pasos
del método basico de cambio de variable.

1.[17(172 + 2)2%dv

Solucion:

Método 1: utilizamos los pasos de integracion del cambio de variable.

1
u=v2+2 = du = 2vdv = vdv=zdu

1 1 11
fv(vz +2)%dv :f(v2+2)2vdv: fuz (Edu) :Efuzdu:§-§u3+6

1
=€(v2+2)3+C

Método 2: desarrollo algebraico

fv(vz +2)%dv = f v(w*+2(w?)(2) + 4)dv = f(vS + 4v3 + 4v)dv

=fv5dv+4fv3dv+4fvdv

1 1 1 1
=€v6+4-zv4+4-§v2+6=gv6+v4+2v2+(]

En este ejercicio, aunque resulta facil evaluar la expresién (v2 + 2)2, se recomienda
aplicar el método del cambio de variable.

2. (x+ 1)*dx
Ja+n

Solucion:

Aplicamos los pasos de integracion del cambio de variable.

u=x+1 > du = dx

44, — 4 :l 5 :1 4
(x + D*dx u*du cu +C 5(x+1) +C

3.f(t +1)1%t
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Solucion:

Para la solucion de este ejercicio utilizamos los pasos del cambio de variable.

u=t+1 = du =dt

1 1
f(t+1)1°dt=fu1°du:—u11+C :H(t+1)11+c

11
4 f dx
") (x —10)7

Solucion:

Se emplea el método de sustitucion de variable para realizar la integracion.

u=x-—10 du = dx
du 1
udu=—ut+C=——+C
f(x—loy f f i 6us
=—————+C
6(x—10)6
5.fv2x— 5dx
Soluciodn:

Se utiliza los pasos de integracién del cambio de variable.

1
u=2x-5 =3 du=2dx = dx=§du

1 1 12
f\/Zx—de=f(u)1/2§du:§ful/2du:E Fi w2+ ¢

1
=3@x =52 +C

6.[(9t +11)5dt

Solucion:

Se aplican los procedimientos de integracion por sustitucion de variable.
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u=9t+11 > du = 9dt > dt=§du

f(9t+11)5dt=fu5(ldu) =1fu5du=1-lu6+6
9 9 9 6

=2 9t+11)°¢+C
54 )

1\ /1
[ (14D (3)a

t t2
Solucion:

Se aplica el método de integracidn del cambio de variable.

1 1 1
u=1+? =3 du =——dt > —dt=—-du

J(1+3)

3 . (tiz) dt = f(u)z‘(—du) = —fu3du = —%u" +C

- 1(1+)+c
T4 t

dx

Solucion:

Se lleva a cabo la integracién utilizando el cambio de variable.

Vx d ! d 2d
U =+x = u=——dx =N — =2du
2Vx Vx

cosv/x
f dx = | cosu (2du) =2fcosudu=251nu+(]
Vx

= 2sinVx + C

SEREY
. ﬁCOS 5

Solucion:
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Se realiza la integracidn siguiendo los pasos del cambio de variable.

1 1 1
U.:g = du=—ﬁd9 = ﬁd9=—du
1 1 _ _ .
fﬁcos(g)dO = fcos(izf) (—du) = —fcosudu— —sinu+C
1
=—sin(—)+C
t

10. f sin 2x cos 2x dx

Solucion:

Se emplea el método de sustitucion de variable para realizar la integracion.

1
u = sin 2x = du = 2cos2xdx > costdx=Edu

I'Z Zd—f (1d)—1fd—112+C—1'22+C
sin2xcos2xdx = | u(zdu) =5 [udu=5-7u = 2 sin” 2x

11.fxsinx2 dx

Solucion:

Se aplican los pasos del cambio de variable para realizar la integracién.

1
u = x%dx = du = 2xdx = xdx = Edu

) ] 1 1 ) 1
fxsmx2 dx =f51nu(§du) =§fsmudu= —Ecosu+C

- 2+C
= 2COSJC

12.[ Ytan x sec? x dx

Solucion:

Se utiliza los pasos de integracién de cambio de variable.

u =tanx dx = du = sec® x dx
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3
fg'\/tanxseczxdx=f3\/ﬂdu=fu1/3du=2u4/3+6

3 3
= Z(tanx)“/3 +C= ZS\/tan4x+C

csc? x
13. f —dx
cot3 x

Solucion:

Se siguen los pasos de integracion de cambio de variable.

u = cotx dx = du = —csc? xdx = csclxdx =—du
fcsczxd _[—du f sy = 1 oo 1 i
o x X T w3 woau=mTu T 2u?
1

1
=———+C=stan’x+C
2 cot? x Zanx

sinx
14.f 3 dx
cos3 x

Solucion:

Se utiliza los pasos de integracién de cambio de variable.

u = cosxdx = du = —sinxdx = sinxdx =—-du
fsinxd [ —du f 3y = 1 = 1 +c
cosix X T w3 woa=mou T 2u?
1

1
=+ =— 2 I
2coszx+ 2sec X+

15.fx\/x + 6dx

Solucion:

Presentamos dos métodos de cambio de variable que conllevan a la misma solucién.

Método 1: se utiliza los pasos de integracién de cambio de variable considerando
solamente el radicando.

u=x+6 > xX=u—=6 > du =dx
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fx\/x + 6dx = f(u —6)ut/?du = fuul/zdu - 6fu1/2du

2 2
=fu3/2du—6f 1/zdu—gu —6- §u3/2+C

2
= g(x +6)52 —4(x+6)3? +C

=§(\/x+6)5—4(\/x+6)3+c

Método 2: se utiliza los pasos de integracién de cambio de variable considerando la
raiz cuadrada.

u=vx+6 = u’=x4+6 = x=u’-6 > dx=2udu
fx\/x+6dx=f(u2—6)u(2udu)=2fu2(u2—6)du=2f(u4—6u2)du

1 1
—2fu4du—12fu2du=2-§u5—12-§u3+C

=§(\/x+6)5—4(\/x+6)3+c

16.fxv3x — 4dx

Solucion:

Método 1: se utiliza los pasos de integracién de cambio de variable considerando
solamente el radicando.

1 1
u=3x—4 = x=§(u+4) = dx=§du
1 1 1
fxv3x—4dx = fg(u+4)u1/2§du =§f(uu1/2 + 4u'/?)du

1 4 1 2 4 2
— 3/2(g _ 1/2dy = = .Zy5/2 3/2 4 ¢
9fu u+9fu u 9 5 +9 3u +

2 8
= —(3x—4)5/2 +—(3x—4-)3/2 +C

S (WA (V) 4
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Método 2: se utiliza los pasos de integracién de cambio de variable considerando
solamente la raiz.

1
=V3x—-4 = u*=3x-4 = x:§(u2+4) = dx=-udu
1 2 2
fxv3x—4dx = f§(u2 +4)u(§udu) =§fu2(u2 + 4)du

2 2 8
= —f(u”‘ + 4u?)du =§fu4du+§fu2du

17.fx2v1 — xdx

Solucion:

Método 1: se utiliza los pasos de integracién de cambio de variable considerando
solamente el radicando.

u=1-x = x=1—-u = dx = —du
fx2v1 —xdx = f(l —w)?u?(—du) = —f(l —2u +u?)u’?du
= —ful/zdu+2fu-u1/2du—fu2-ul/zdu

—ful/zdu+quz‘/zdu—fus/zdu

2 2 2
:—§u3/2+2-§u5/2—7u7/2+(]

2 4 2
—3A=0 24z (1-0 -2 (1 -0)+C

T 4 (VTR (VTR +c

Método 2: se utiliza los pasos de integracién de cambio de variable considerando
solamente la raiz.

u=vl—-x = u?=1-x = x=1-u?> = dx=-2udu
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fx2v1 —xdx = f(l —u?)?u(—2udu) = -2 f u?(1 —u?)?du
=-2 f u?(1 - 2u? + uH)du = -2 f(uz —2u* + ub)du
= —2fu2du+4fu4du—2fu6du

1 1 1
:—2-§u3+4-§u5—2-7u7+6

- TR+ (VT — 2 (VT 4 C

18.f(x + 1)V2 — xdx

Solucion:

Método 1: aplicamos cambio de variable considerando solamente el radicando.

u=2-x > x=2—-u > dx = —du
f(x+ V2 — xdx = f(Z —u+ Du?(—du) = —f(B —wu'?du
= —fSul/zdu+fu-u1/2du= —3fu1/2du+fu3/2du

2 2
=—-3.— 3/2 —q,5/2 C
3u +5u +

2
=—2(2 —x)3/? +§(2 —x)52+C

= 227 +5 (V27 %) 4 C

Método 2: aplicamos cambio de variable considerando solamente la raiz.

u=v2—-x = u?=2-x = x=2-u®> = dx=-2udu
f(x + 1)V2 — xdx = f(Z —u? + Du(—2udu) = —2fu2(3 —u?)du

=-2 f(3u2 —utdu = —6fu2du + qu“du

3 uS

2
:—6-%+2-?+C=—2(@)3+§(\/H)5+C
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x2 -1 4
—dx
V2x—1

Solucion:

19.

Se utiliza los pasos de integracién del cambio de variable.

1
2x—1 = u?l=2x-1 = x=z(u2+1) = dx = udu

xzx__l [1/2G2 :1)] du=f[%(u2+1)2 —1] du
:f[%(u4+2u2+1)—1]du=f<u4+2u2+1_4>du
1 u® 3

—1f4d+1f2d 3fd Ly +cC
=) wdutg | wdu-g | du=g 43z - qu

1
% M)5+E(M)3—ZM+C

20 f dx
) V1 = 4x?
Solucion:
Aplicamos los pasos del cambio de variable y teorema 1.11 (dondea = 1y v = u).
u=2x = du = 2dx = dxzzdu

f\/1—4x2 f\/12—(2x)2_ f\/ﬁ ;

sin"u+C

e 12x+C
= osin™! 2x

21 f dx
") Vo= 16x2
Solucion:

Aplicamos los pasos del cambio de variable y teorema 1.11 (donde a = 3y v = u).

u=4x > du = 4dx =3 dxzzdu
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dx _ dx _ 1/4du 1 du 1 _u
f\/9—16x2_f\/32—(4x)2_ \/32—u2‘1fm‘25‘“ 3¢
14
—Zsm ?+C

22 f dx
") 1+ 25x2
Solucion:

Aplicamos los pasos del cambio de variable y teorema 1.11 (dondea = 1y v = u).

1
u = 5x > du = 5dx =3 dngdu

f dx _f dx _fl/Sdu_lf du —1t o
T+25¢2 )12+ (502 J12+w? 5)12+u? 50 Y

1
= gtan‘1 S5x+C

23[ dx
") 2 +9x2

Solucion:

Aplicamos cambio de variable y usamos el teorema 1.11 (donde a = V2 y v = u).

1
u=3x > du = 3dx =3 dx=§du

f dx =f dx =f 1/3du :lf du
2 4 9x? (\/7)2 + (3x%)2 (\/7)2 +u2 3 (\/7)2 + 2

1 3x
+CE——=tan'—=+C

u
V2 3VZ 2

e*
Solucién:

Aplicamos cambio de variable y utilizamos el teorema 1.11 (donde a = V5 y v = u).
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u=e* = du = e*dx
f—ex dx = f eldx = f du = * tan! =+ C
S+er V5) +@? J (B +uz V5 V5
— 1 -1 ex
= ﬁtan ﬁ +C
25, [ 222 4n
N
Solucién:

Dividimos término a término, quedandonos dos integrales. La primera integral
aplicamos cambio de variable y la segunda integral usamos el teorema 1.11 (donde
a=1yv=x).

u=1-x? = du = —2dx = 2dx = —du
2x—3d 2xdx 3[ dx —du 3sin-1x + C
Y= | —— — = —3sin"'x
V1—x2 V1—«Z V1Z —x2 Vu
1 1
=—fu_fdu—Bsin‘1x+C=——u1/2—3sin‘1x+C
1/2
=—-24J1—x2-3sin"'x+C
zefx_Bd
) xz+2 x
Solucién:

Dividimos término a término, quedandonos dos integrales. La primera integral
aplicamos cambio de variable y la segunda integral se emplea el teorema 1.12

(dondea =2y v = x).

1
u=x%+2 > du = 2xdx > xdx=§du
1
fx—Sd fxdx 8[ dx fjdu g 1t ‘1U+C
x = - = —8-—tan"!—
xZ+2 xZ+2 2+ (V2)° u V2 V2

1 X
=Zlnu—4V2tan 1=+ C
2 7
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x—8 1
f dx|= Eln(x2 +2) —4v/2tan™!

x2 42

+C

Sl =

27ftan‘1xd
)14+ x2 x

Solucion:

Utilizamos la técnica de sustitucion de variable.

u=tantx = du =

tan~!x dx 1
f—dx=ftan‘1x- =fudu=—u2+(]
1+ 2

1+ x?

sin~1x
28._{ 12 dx

Solucion:

dx

1+ x2

x2

1
=3 (tan"1x)?2 + C

Aplicamos el método del cambio de variable.

u=sin"tx = du =

dx

V1 —x2

sin~ x Vsin—Tx
f 1—x2 f dx—f(sm Tx)/2 —— _1_ - f 12 gy

Su¥2+C

29_{ dx
o x2—x+2

Solucion:

2 2
Completamos cuadrados a la expresién del denominador [(g) = (—l)

x
2 2
=Z(sin"1x)32 +Cc =2

3(sm x) 3

(Vomri=) +c

Después, utilizamos cambio de variable y el teorema 1.12.

U=x—-= > du =dx
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dx
30.[—
V3x —x%2 -2

Solucion:

2
. . s . 3
Primero completamos cuadrados a la expresién del denominador [(—5) = —].

Después, aplicamos cambio de variable y utilizamos el teorema 1.12.

3
u=x-—= = du =dx
2
J==- f% I =
3x —x? —(x*—-3x+2) 9
3x+4)+2 4_]
(-3 J—— = / ) —@w?
J [(" 2) 4
X 3
. u . 2
_ -1 = — -1
= sin 1 + C = sin 1 +C
2 2
2x—3
= sin~1 % +(=sin"12x—3)+C
2

dx
31.[—
V15 + 2x — x2

38



Solucion:

2
Completamos cuadrados a la expresidn del denominador [(— %) = 1]. Después, se
utiliza los pasos de integracion de cambio de variable y aplicar el teorema 1.12.
u=x-1 = du = dx

X dx

e | s~
V15 + 2x — x2 J—=(x% = 2x — 15) J-[(x2 =2x+1) — 15— 1]

_f dx _f dx
- -16] 16— (- D?

=sin™?! (%) + C|=sin™? (x ; 1) +C

- @7 - W?

2dx
32.[
(x—3)Vx?—6x+5
Solucién:

2
Completamos cuadrados a la expresidn del denominador [(— g) = 9]. Después, se

utiliza los pasos de integracion de cambio de variable y aplicar el teorema 1.12.

u=x-—3 = du = dx

f 2dx zzf dx
(x—=3)Vx2—6x+5 (x—3)J/(x2—6x+9)+5—9

_f _f du —1 —1(E)+C
B (x—=3) (x—3)2_22_ um—zsec

1 _1(x—3)+c
= 5 sec >

1.3. Integrales indefinidas de funciones logaritmica natural y exponencial.

A continuacion, se presentan los teoremas de las integrales indefinidas de funciones
exponenciales y logaritmicas naturales.

Teorema 1.14:
dv
f— =lhv+C
v
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Teorema 1.15:
a.fe"dvze"+C
b. fe dv =+-— e+‘“’ +C

Teorema 1.16:

a. | bvdv =

+av

+C

b. | bt%dy = +—
f v “alnb

En los siguientes ejercicios se utilizan los teoremas 1.14 a 1.16 de la integracion
indefinida de funciones exponenciales y logaritmicas, asi como también se pueden
encontrar integrales de los teoremas 1.1 a 1.13.

dx
7x
Solucion:

Toda constante fuera de la integral, y utilizamos el teorema 1.14, en consecuencia,

dx_l dx _1l x|+ C
7x 7)) x |7
2.f7ex/7dx
Solucion:

Llevamos la constante fuera de la integral, y utilizamos el teorema 1.15 (b),

1
f7ex/7dx = 7-1/—78"/7 + C|=49e*7 +C

3. f(ezx + e )dx

Solucion:
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Esta integral indefinida es una expresién de 2 términos, es decir, que para cada
termino una integral e inmediatamente aplicamos el teorema 1.15 (b).

1 1
f(ezx + e 2¥)dx = f e?*dx + f e~ dx|= Eezx - Ee‘zx +C

4.[(6’( + e ™)2dx

Solucion:

Primero trabajamos el binomio que produce un trinomio cuadrado perfecto.
Después, tenemos tres integrales indefinidas e inmediatamente aplicamos los
teoremas 1.15 (b) y 1.2, respectivamente. Por lo tanto,

f(ex +e7*)2dx = f(ezx + 2e*e™ + e ¥)dx

1 1
=fezxdx+2fdx+fe‘2xdx=Eezx+2x—§e‘2x+C

s.f‘/};ydy

y

Solucion:

Dividimos término a término, y aplicamos los teoremas 1.4y 1.14. Por lo tanto,

Jy-=y fyl/z y) f_ fdy

dy = 2 \dy = 3/2d — -

f I (yz )]y
2

=2y Y2 —Iny+C=—-—=—-Iny+C

N

o[G-2)
1z % x
Solucion:

La integral se descompone en dos integrales que son resueltas de manera inmediata
aplicando los teoremas 1.4y 1.14.

f(x Z)d —1fd (il ncicd=tr—2mxsc
2 X x—2 xax x—z 2x nx —4x nx
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7 f dx
") x-=5
Solucion:

Esta integral no puede evaluarse de manera inmediata ni por la division larga, en
consecuencia, aplicamos el método del cambio de variable.

u=x-5 > du = dx

fdx [ oyt e mG—s) tC
p ?—nu =In(x —5)
8[ dx

) 2x+5

Soluciodn:

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.14,

1
u=2x+5 > du = 2dx =3 dxzzdu

f dx _fl/Zdu_l du_ll +C—11 2% +5) 4+ C
xt5 ) u ~32) 7w " ahutllmgn@x+s)

9[ 9dx
") 5—4x

Solucion:

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.14,

u=>5—4x > du = —4dx = dx=—Zdu

f9dx _9[—1/4du_ 9 (du _ 91 +d= 9l 4 4+ C
5—4x v~ 1) w T vt (=G -4

x2

Solucion:

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.14,
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1
u=5-—x3 = du = —3x2%dx = x%dx = —§du

f x2 P _f—1/3du_ 1 (du 11 +cl= 1l & SN
5—x3 = u T o3) u 3nu N 3rl x°)

x? —2x

Solucion:

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.14,

— 43 2 — 2 __ 2 _ = l
u=x3—-3x = du=@Bx*—-6x)dx = (x*—-2x)dx= 3 du

1
m = 7:§1nu+C:§ln(x3—3x2)+C

fxz—Zx _f1/3du_1 du 1
x= u 3

12[ x% + 4x 4
) x3+6x2+5 x

Solucion:

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.14,

1
u=x3+6x2+5 = du=@@Bx?+12x)dx = (x%+4x)dx= §du

f x? + 4x _f1/3du_1 du_ll +C—1l(3+62+5 s
x3+6x2+5 = u 3 u_3nu —3nx x )
13.[61‘3xdx

Solucidn:

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.15a,

u=1-3x =3 du = —3dx > dx=—§du

1 1 1
fel‘”dxzfe”(——du) = —§fe“du= —§e“+C = —§el‘3x+C
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14.fex(ex +1)2dx

Solucion:
Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.4,

u=e*+1 = du = e*dx

X(pX 2 — 2 _1 3 _l x 3
e*(e*+ 1)%dx = | (w) du—3u +C—3(e +1)°+C

eVx
15. f —dx

Vx
Solucion:

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.15a,

Vx d L d 1d 2d
uU=+x = u = x = —dx=2du
2Vx Vx

eVx
f—dxzfe”(Zdu)=2fe“du=2e”+C=2e‘/;+C
Vx

e—x
16.[ —dx
1+e™™

Solucion:

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.14,

u=1+e* = du = —e *dx = e *dx = —du
e™ —du du .
fl_l_e_xdx: =" ?z—lnu+C=—ln(1+e )+ C

e*+e™*
et —e

Solucion:

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.14,
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u=e*—e* = du = (e* + e ¥)dx

e*+e™* du
f—dx=f7=lnu+6=ln(ex—e‘x)+C

ex_ex

18 2e* —2e™*
") (e* +ex)? X
Soluciodn:

Evaluamos la integral mediante el cambio de variable y utilizamos el teorema 1.4,

u=e*+e”* = du = (e* —e™)dx
2e* —2e7* (e*—e™) du
———dx =2 —_dx=2f—=2fu‘2du=—2u‘1+6
(ex +e x)2 (ex +e x)Z u2
2 2
=——+4(Cl=———+¢C
u+ ex+e‘x+

2x% +7x -3
19.[— X

x—2
Solucion:

Primero aplicamos la division larga, y después evaluamos la integral.

2x* +7x -3 X-2
—2x% + 4x 2x+11
// 11x-3
—11x + 22
// 19
2x% 4+ 7x — 3 19
f—dx =f(2x+11+—)dx
x—2 X — 2

dx
=2fxdx+11fdx+19f
x—2

Evaluamos las dos primeras integrales de manera inmediata con los teoremas 1.4y
1.2. La ultima integral aplicamos el método del cambio de variable,
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u=x-—2 = du = dx

f2x2+7x—3

1 du
dx=2-—x2+11x+19f—=x2+11x+19lnu+6
x—2 2 u

=x?2+11x+19In(x-2)+C

x3 —6x —20
Zo.f—dx
x+5

Solucion:

Primero aplicamos la division larga, y después evaluamos la integral.

x3—6x—20 xX+5
—x3 — 5x? x?—5x+19
/] —5x*—6x
5x% + 25x
/] 19x— 20
—-19x — 95
// —115

x3 —6x—20 115
f—dxzf(x2—5x+19——)dx
x+5 x+5

dx
=fx2dx—5fxdx+19fdx—115f
x+5

Evaluamos las tres primeras integrales de manera inmediata con los teoremas 1.4y
1.2. La ultima integral aplicamos el método del cambio de variable,

u=x+5 > du = dx

x3 —6x—20 1 1 du
f—dx:—x3—5-—x2+19x—115f—
x+5 3 2 u

1 5
=§x3 —Exz +19x —115lnu+C

1 5
= §x3 —Exz +19x — 115In(x +5)+ C
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dx

21 fx3—4-x2—4-x+20
’ x2—5

Solucion:

Primero aplicamos la division larga, y después evaluamos la integral.

x3 —4x% —4x+20 x2 -5

—x3 + 5x x—4

/] —4x*+ x +20

4x? —-20

/ox /]

fx3—6x—20d _f 44 x 4 _f 4 4fd +f xdx
g = | (et pTg) s [xdx—a faxt [y

Evaluamos las dos primeras integrales de manera inmediata con los teoremas 1.4y
1.2. La ultima integral aplicamos el método del cambio de variable,

1
u=x%2-5 = du = 2xdx = xdx=§du

fx3—6x—20d 1 A +1fdu+c_1 24 +1l i
T x5 AT TETR TR Er oAy

=L 4+1l 2=5)+C
—Ex X En(x )

In? 3x
22.[ dx
x

Solucion:
Utilizamos el método de integracién del cambio de variable.

u=In3x = du =—(3)dx =—
3x() X

In2 3x dx 1 1
f . dx=f(ln3x)27=fu2du=§u3+6=§(ln3x)3+C
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23[ 2+1In%x 4
") x(1—=1nx) X

Solucion:

Evaluamos la integral indefinida mediante el método del cambio de variable, por lo
tanto,

dx
u=1-Inx > Inx=1-u > 7:—du

u

f 2+In%x _f2+(lnx)2dx_ f2+(1—u)2d

x(1—1nx) x (1-Inx) x u
2+1—-2u+u? 3 —2u+u?

_f—duz_fT

du

u

du u u?
-3 —+zf—du—f—du
u u u

du
=—3f—+2fdu—fudu
u

Para evaluar cada integral utilizamos los teoremas 1.14, 1.1y 1.4, respectivamente,
y sustituimos el cambio de variable de u, en consecuencia,

fZHHZxd - 3lnu+2u—sw?+C
x(1—-1nx) = e Zu

1
—3In|1 —Inx| +2(1 —In|x|) — E(l —In|xD?+C

1
—3In|1 —Inx| + 2 — 21In|x| _E(l —2In|x| +In?|x]) + C

1 1
—3In|1 —Inx| + 2 — 21In|x| —§+ln|x| —Elnzlxl +C

1 3
—3In|1 = Inx| — In|x| —zln2|x| +§+ I

1
—3In|1 —Inx| — In|x| —Elnzlxl +C

24[ 2Inx +1 d
") x[(Inx)2 + Inx] x

Solucion:
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Evaluamos la integral utilizando el método del cambio de variable, por lo tanto,

1 1
u=(nx)2+Inx = du=(21nx-;+;)dx
2lnx +1
CLLLE PN
f 2lnx +1 d _f 1 21nx+1d _fld w4 C
x[(Inx)2 + Inx] x= [(Inx)2 + In x] x x=ppen =i

=In[(Inx)? +Inx] + C

dx

x5 —2x3 4+ 5x% -2
s
x3+1

Solucion:

Primero aplicamos la division larga, y después evaluamos la integral.

x5 —2x3 +5x2 -2 x¥+1
—x° — x? x? =2
/] —2x3+4x? -2

2x3 + 2

/] 4x* ]/

fx5—2x3+5x2—2d _f 25y 4x? 4
x3+1 = x x3+1 X

x2
= 2dx—21|d 4[—
fx X f X + FERE)

Para evaluar las dos primeras integrales utilizamos los teoremas 1.4 y 1.1,
respectivamente, y en la ultima integral aplicamos el método de integracién por
cambio de variable, por lo tanto,

u=x3+1 = du = 3x%dx = §du = x%dx
1
x5 —2x% 4+ 5x% -2 1, zdu 1 4
f dx==x3-2x+4 | =—==x3-2x+=Inu+C
x3+1 3 u 3 3

1 4
=§x3 —2x+§ln(x3 +1)+C

49



26. f atetdt

Solucion:

Se utiliza el teorema de integracion 1.16.
(ae)
In(ae)

En el denominador aplicamos propiedad de logaritmo natural de un producto,
In(ab) = Ina + In b, en consecuencia,

fatetdt — @l—e)t C = (ae)t
Ina+Ine Ina+1

+C

fatetdt = f(ae)tdt =

27. f 5%*+2x(2x3 + 1)dx

Solucion:

Primero realizamos el cambio de variable, y después evaluamos la integral
utilizando el teorema 1.16 (a).

1
u=x*+2x >  du= (4x3+2)dx > Edu = (2x3 + 1)dx

. 1 1 1 gu 5x4+2x
5¥*+2X(2x3 + 1)d :f5u—d :—f5ud =-——+4(C|= C
f (2" + Dax 2477 Y= 2ms T 2ms

28.[25i“xcosxdx

Solucion:

Realizamos un cambio de variable, y después utilizamos el teorema 1.16a.

v =sinx > dv = cosx dx
] u Zsinx
25mx dx = | 2%dv = —=+ C|= c
f cosxax f VE Rz T Tz T

29. f ev2¢”3¢” gy
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Solucion:
Aplicamos el método del cambio de variable y después empleamos el teorema 1.16.

u=-eY = du =e?dy
u

yoe¥geY gy, — y(2.2V¢Y dv — eY (oY = u —6_
e¥2¢3dy = | e¥(2-3)dy = | 6° (e?dy) = 6du—ln6+C

e* -1
30.[ dx

e*+1
Soluciodn:

Aplicamos artificio matematico en el numerador tal que se tenga un factor lineal
idéntico al del denominador, en consecuencia,

e*—1 2 —e* -1 2e* —(e*+1)
P e P S CAR P
e*+1 e*+1 e*+1

2e* e*+1 e*
=f dx—f dx=2f dx—fdx
e*+1 e*+1 e*+1
La primera integral es evaluada mediante el método del cambio de variable y

aplicamos el teorema 1.14, mientras que la segunda integral usamos el teorema 1.1,
por lo tanto,

v=e*+1 = dv = e*dx

e*—1 dv
f—dx=Zf——x+C=21nv—x+C=21n(ex+1)—x+C
e*+1 v

31f tan x p
"J In(cos x) x
Solucién:

Este problema es conveniente pensar en aplicar en el denominador el método del
cambio de variable. Debemos recordar que la identidad trigonométrica de tangente
estd dada por,
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Utilizamos cambio de variable, tal que,

sinx sin x
v =In(cosx) = dv = — x = x = —dv
cosx cosx
tanx sinx 1 sinx dx dv
f—dx=f—dx=f --[Z
In(cos x) cos x In(cos x) In(cosx) cosx v
= —In|v| + C|= —In|In(cos x)| + C
32 f ! d
. x
1—+x
Solucién:
Aplicamos cambio de variable,
dx
v=1—-+vVx = Vx=1-v = —=—dv = dx=-2(1-v)dv
2vx

fl_l\/}dx:f%[—z(l—v)dv]=—2f1;vdv:—2f%dv+2fgdv

dv
=—2f7+2fdv=—21nv+2v+C

=—-2Inj1 —vx|+2(1-vx)+C
=—-2In|l —Vx|+2-2Vx+(=-2Vx—2In(vx—-1)+C

33 f X
S rex+13%F
Solucion:

Aplicamos artificio matematico en el numerador y descomponemos la fraccion para
evaluar la integral indefinida mediante algin teorema y/o cambio de variable,

f 2x d _f 2x+6—6 d
trox+ 137" ) rex+13%

_f 2t6 f 6 .
Tt + 37 ) v+ 13Y
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La primera integral evaluamos mediante el método del cambio de variable y
aplicamos el teorema 1.14, mientras que la segunda integral (completamos
cuadrados) utilizamos el teorema 1.12 (u = x + 3,du = dx,a = 2) , por lo tanto,

v=x%2+6x+13 > dv = (2x + 6)dx

f 2x d _fdu f 6 d
Zrex+ B3 ) u ) v+ +a

~ Inful 6[ dx
- (x+3)2+4

1 x+3
=In|x? + 6x + 13| — 6-§tan‘1 (T) +C

x+3
=In|x? + 6x + 13| —3tan™! (T) +C

dx
34.[6—
x® + x

Solucion:

La fraccion de la integral se divide para x®, por lo tanto,

dx dx
= o ol e
x6+x ) x®, x 1
ety 1ty
realizamos cambio de variable para la expresion del denominador, en consecuencia,
1 dx 1
v:1+F > dv=—;dx = F:—gdv
1
f dx —f_gdv— e N R RN O
x6+x v 5)v -5 - 5" x°

35. f(7 — 95in 9x)57¥1Cc0s 9%

Solucion:

Evaluamos la integral mediante el método del cambio de variable y aplicamos el
teorema 1.16, por lo tanto,
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v =7x+ cos9x = dv = (7 — 9sin9x)dx

v 57x+cos 9x

ms ¢ s ¢

f(7 — 95sin 9x)57X¥*cos9% dy = f 5Ydv =

36[ x+1 d
Jxz2—2x+2 x

Solucion:

Completamos cuadrados en el denominador, por lo tanto,

f x+1 f x+1 di = x+1 d
2t 2" -2+ D+1 7 a2 +1*
Aplicamos cambio de variable en el denominador,

v=x-—1 > x=v+1 > dx =dv
f x+1 d _fv+1+1d _fv+2d
x2—2x+2 = v2+1 vE v2+1 v

—f v d+f 24
_v2+1v v2+1v

En la primera integral nuevamente aplicamos cambio de variable (usamos después
teorema 1.14) y la segunda integral empleamos el teorema 1.12, en consecuencia,

1
u=v2+1 = du = 2vdv = vdv=zdx

f x+1 d —1fdu+2t -1 +C—1l||+2t -1 D+C
7 ox T2 x—2 ” an~'(v) —Znu an"'(x — 1)

1
= Elnlv2 +1|+2tan" Y (x - 1)+ C

1
= Elnl(x— D2+1|+2tan" 1 (x -1 +C

1.4. Integrales definidas.

En las secciones 1.1 a 1.3 se estudiaron las integrales indefinidas, ya que estas
proporcionan la relacion inversa entre las integrales y derivadas. En esta seccion
seguiremos evaluando las integrales, pero como definidas, de acuerdo con el
siguiente teorema,
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Teorema 1.17:

Sea una funcién f continua e integrable en el intervalo [a, b], y sea F cualquier
antiderivada de f en el mismo intervalo [a, b], entonces:

b
f f()dx = F(b) — F(a)

A continuacion, se desarrollan ejercicios de integraciéon definida utilizando los
teoremas 1.1 a 1.16 que fueron estudiados en las secciones 1.1 a 1.3, y
posteriormente evaluamos el resultado obtenido segun el teorema 1.17.

2
1.[ (4x3 + 7)dx
1

Solucion:

2 2

2 1
x3dx+7f dx=|4-zx4+7x

1

f2(4x3 + 7)dx = 4[

=[2*+7Q)] - [1*+7(D)] =16 +14—1—7|=22

1

T
2.[ (4sinx — 3 cosx)dx
0

Solucion:

T s

sinx dx — 3[ cosxdx = [—4cosx — 3sinx]|§
0

T
f (4sinx — 3 cosx)dx = 4[
0 0

(—4cosm —3sinm) — (—4 cos0 — 3sin0)
—4(-1)—-3(0)+4(1)—-3(0)=4+4|=38

3m/2
3.[ |sin x|dx
0

Solucion:

Para evaluar esta integral definida, debemos considerar el comportamiento del

.y . . 3 . s .
valor absoluto de la funcién sin x dentro del intervalo [O,En]. La funcidn sin x es

positiva en [0, ] y negativa en [n,%n], , por lo tanto, el valor absoluto se define por

partes como:
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sinx si0<x<m

|sinx| = {— sinx sim<x<3m/2

Con base en esta definicidn por tramos, la integral se descompone en dos partes:

3n

3m/2 ™ 3m/2 ™ >
f [sin x|dx =f sinx dx +f (—sinx)dx =f sin x dx —f sin x dx
0 0 T 0 T

3m/2

= [— COSX]g - [_ cos x]n:

[(—cosm) — (—cos0) ]+ [(cos 37”) - ((— cos 7'[))]

D -CED+0O0) - D
=3

T

4, f |sin 2x|dx
_r
3

Solucion:

Al igual que en el ejercicio anterior, esta integral se resuelve considerando la
definicidon por tramos del valor absoluto de la funcién involucrada. En este caso,
analizamos el comportamiento de:

—sin2x para —w/3<x<0

sin2x| =3 .
| | {stx para 0<x<m

En consecuencia, Con base en esta regla de correspondencia, descomponemos la
integral:

T 0 T
f |sin2x|dx=f —sin2xdx+f sin 2x dx
_m n o

3

1 0 1 ™
= —(—ECOSZJC) . + |—§c052x .

1 0 1 m
= 5 CcoS 2x 5 CcoS 2x

0

o] [eos(- 2] (e -]

-Lo-3()-Bo-Jo] -1

1_
4 2
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5. fz (x — 2|x])dx

Solucion:

Para resolver esta integral definida, primero debemos considerar la definicién por
tramos de la funcién valor absoluto. Sabemos que:

|x|_{—x si—1<x<0
T lx si0<x<2

Con base en esta definicion, descomponemos la integral en dos partes, dividiendo
el intervalo en los puntos donde la funcién cambia de forma:

2

fz (x —2|xDdx = fo [x — 2(—x)]dx + f [x — 2(x)]dx

-1
0

:fo(x+2x)dx+f2(x—2x)dx=3f

-1

2
xdx — f xdx
0

o] e -or-der |- fer-Lo]
3

T2 T2

1
6.[ [x? — x|dx

-1
Solucion:

Para resolver esta integral definida, debemos identificar primero cémo se comporta
la funcién dentro del valor absoluto. Observamos que:

x> —x=x(x—1)

Esta expresion cambia de signo dentro del intervalo [—1,1] en los puntos x = 0 y
x = 1, por lo que es necesario definir |x2 — x| por tramos:

|x2—x|={ x?—x si—1<x<0
—(x?—-x) si0<x<1

Por lo tanto, la integral definida se puede evaluar,
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1 0 1
f [x? — x|dx = f (x? — x)dx +f —(x? — x)dx
-1 -1

=Ex "x] [3 B xz]o

1
2
~fo-fe g -5 307 o)

=1

N
I
Wl =
N =

+

W[ =

+

16
7.[ |3vx — 6|dx
0

Solucion:

Para resolver esta integral definida, es necesario analizar la funcién dentro del
valor absoluto. Consideramos:

f(x) =3Vx—6
La expresién cambia de signo cuando 3vx — 6 = 0, es decir, cuando:
V=2 = x=4

Por lo tanto, la funcidn |3\/§ - 6| se define por tramos de la siguiente manera:

|3\/}_6|_{—(3\/§—6) si0<x<4
3Wx—6 si4<x<16

Con base en esto, descomponemos la integral original:
16 4 16
f |3\/§—6|dx:—f (Bvx—6)dx+ [ (3Vx—6)dx
0 0 0

- f4(3x1/2 —6)dx + f16(3x1/2 - 6)dx
- [3 -§x3/2 ] [3 =x3 6x]4

—[2(vx)’ - 6x]0 +[2(vx)* - 6x]16
=—{[2(2)° —6-4] — 0} +{[2(4)° - 6-16] — [2(2)* — 6 - 4]}
=—-16+24+ 128 —-96 — 16 + 24|= 48
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n . .
8 f? sin @ + sin 0 tan? 8
“J sec? 6

Solucion:

Para simplificar esta integral, primero identificamos factores comunes en el
numerador y luego aplicamos una identidad trigonométrica fundamental, sec? 8 =
1 + tan? 6. Por lo tanto,

T T Vs
3sin @ + sin @ tan? 3sin @ (1 + tan? 9) 3sinfsec’d
f do f do = f _
0 0 0

sec? 0 sec? @ secZ 0

3

= fgsinO df = [—cos 9]% = [— cos (g)] — [—cos(0)]

= 3 =

1
2

2
9.[ xv 5 — x%dx
1

Solucion:

Para resolver esta integral definida, aplicamos un cambio de variable que permita
simplificar la expresion compuesta por una funcién cuadratica dentro de una raiz
multiplicada por x. Sean:

1
v=5-—x2 = dv = —2xdx = xdx=—§dv

Sustituyendo, se obtiene,

2 2 2 1 1 2
f x4/5 — x2dx = f (5 —x)Y2xdx = f v1/2 (——dv) = ——f vY/2dy
1 1 1 2 2 1

|_12 2=—l(m)32

— . —p3/2
v
1 3 1

2 3

31657 - (5= )| - -0 -l

OSTIRN

2x+5
10.[ dx
0o X—3
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Solucion:

Para simplificar la expresién del integrando, aplicamos un artificio algebraico en el
numerador, evitando asi recurrir a la division larga. La idea es escribir el numerador
de forma que incluya un término igual al denominador. Observamos que:

x+5 x—-34+8 x-3 8 8

x—3  x-—3 _x—3+x—3=1+x—3

Sustituimos en la integral y evaluamos la misma aplicando el teorema 1.1 para la
primera integral y en la segunda el método del cambio de variable,

u=x-—3 > du = dx

2x+5 2 8 2 2 dx duy®

f dx=f (1+ )dx=fdx+8f =[x+8f—

0 X—3 0 x—3 o 0o X—3 uly
=[x + 8In|ul]3 = [x + 81In|x — 3|]3

=[2+8In]2—3|]]-[0+8Inj0—3]]=2+8In1—8In3
=2-8In3

2 ex
11.[0 mdx
Solucion:
En esta integral definida, aplicamos un cambio de variable que permita simplificar
la expresion del integrando, es decir,

dv dv
v=e* = dv = e*dx > dx =—=—
ex v

Sustituyendo, se obtiene,

fz e"d_fz e* d_fzvdv_fz dv _ |tan-1 |2
o 1+e? = o 1+ (e¥)? = o 1+v2 v a o 1+v? = i vlo

=|tan"'e*|i =tan"'e? —tan"'e® =tan"17.389 —tan"' 1

= 0.651 rad

P
L -2
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Solucion:

Para simplificar esta integral definida, aplicamos un cambio de variable que nos
permita expresar todo el integrando en términos de una sola variable:

v=x-—2 > x=v+2 =3 dx =dv

Sustituyendo, se obtiene,

fw+2)? v tdvt+4
f(—Z)Z f v? ”‘L iz

Y2 4v 4 4 ‘dv 4
:f St=+= dv=fdv+4 —+4f v=2dv
3 \V v v 3 3 v 3
4 4

(x—2)+4-1n(x—2)——

+4lnv——
v nv 2

- [(2) +4In(2) — %] - :(1) +4In(1) — %]

=2+4In2-2-1+4=4In2+3

3Vxt -1
13.[ —dx
L x

Solucion:

Antes de resolver esta integral definida, simplificamos el radicando factorizando la
expresion,

F\/T —Lax = UGB dx

X

Para avanzar, aplicamos un cambio de variable. Sea:

x(=v = x=+v = dx=——=dv

2V

Sustituyendo en la integral, se obtiene,

[ e [T b [,

Ahora aplicamos un segundo cambio de variable:
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P d 2vdv d ud
U =+v%- = U= —— = v=—du
2Vv2 —1 v

fS x4—1d _1f3uud _1f3u2d
1 x x_21vvu_21v2u

Pero, u=+vvz—-1 = u=v?2-1 > vi=u’+1 Ahora
aplicamos un artificio algebraico en el numerador para simplificar, tal que,
tengamos un factor cuadratico idéntico al del denominador, es decir,

3x* -1 103w +1) -1 1 (3u2+1 10 1
fl Td“zfl uz—+1d”=5£ uz—+1du_§f1 Zri
13 103 1 3
:Efldu—zfl u2+1 |2u——tan 1(u)
1 3
m—itan‘l(\/ﬁ)

1

1

2

1 1 °
= E\/x”‘ -1 —Etan‘1 (\/x“ — 1)

1

2

1

80 — —tan‘l(\/_)] [0 - —tan‘l(O)]

= %\/16 -5 — tan‘l(v16 : 5) =25 — Etan‘l(él-\/g)

X
dx
0o Vx+1
Solucion:

Para simplificar esta integral definida, aplicamos un cambio de variable que permita
eliminar la raiz cuadrada. Sea:

v =4/x > dv=—dx =3 dx = 2+/xdv = 2vdv
Vx e VE

Sustituyendo, se obtiene,

9172 2o 5 9v3d
x_fov+1(vv)_ fov+1 v

d
0o Vx+1

Para resolver esta integral, se usa un artificio algebraico que permita simplificar el
cociente. Aplicamos divisién polinémica para expresar:
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v: v+ vi—vP-v+v+1-1 V+D-vw+D+@w+1) -1

v+1 v+1 v+1
v3 v v+1) vv+1 v+1 1

_VeH) vt @4 11
v+1 v+1 v+1 v+1 v+1 v+1

Sustituyendo, se obtiene,
o x o 1

f dx=2f (vz—v+1——)dv
0 x+1 0 v+1

9 9 9 9 dv
=2U vzdv—fvdv+fdv—f ]
0 0 0 o V+1

Las primeras tres integrales son de solucion inmediata (véase teoremas 1.1 a 1.4),y
la ultima integral evaluamos mediante cambio de variable, por lo tanto,

u=v+1 > du =dv

o x 1 1 duy’ 1, 3 1 ’
dx=2|—v3——v2+v—f— =2|— x) —sx++vx—Inu

fo x4+ 1 3 2 ul, 3(\/_) 2 VX 0

9

=2 %(\/E)3—%x+\/§—ln(v+1)

0

) %(\/E)B—%x+\/§—ln(\/§+1)

9
0

=2 E \9)* —%(9) +v9 - In(vV9 + 1)] -[- ln(l)]}

11 9
=2 5(3)3—5+3—1n(3+1)]—[o] =15—2In4

1

15.[2 dx
0 \/(1 + xz)ln(x +vV1+ xz)

Solucion:

Aplicando propiedades de potenciacién vVab = va - Vb, se obtiene,

1
dx

2 2 1
= dx
fo \/(1+x2)ln(x+\/1+x2) fo V(A +x?2) /ln(x+\/1+x2)
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Evaluamos la integral aplicando el método del cambio de variable,

1 x
=In(x+y1+x? > d :—[1+_]d
v n(x x) v (x + V1 +x2) V1 +x? g
dx [\/1+x2+x] dx
v = = dv =
(x +V1+x2)[ VI+x2 V14 x2

1 2 1 dx
dx =

fo \/(1+x2)ln(x+\/1+x2) 0 \/ln(x+\/1+x2)‘/(1+x2)

2 1 2 _1 2
=f0 ﬁdv=fo v 2dv=|2\/§|0= 2\/1n(x+\/1+x2)

= [ZJln(Z + x/E)] - [ZJln(O + x/T)] = 2\/1n(2 +5)

2

0

16 fz 2x + 3 p
. X
0 \/4—x2

Solucion:

Dado que ambos términos del numerador comparten el mismo denominador,
descomponemos la integral en dos partes:

22x+3d fz 2x d+f2 3 4
—_——dx = | ———dx ———dx
o\/4-—x2 0\/4—x2 o\/4-—x2
Ahora, resolvemos la primera integral mediante cambio de variable, y la segunda
usando el Teorema 1.11, que corresponde a una forma estandar de integral:

v=4—x2 = dv = —2xdx = 2xdx = —dv
22x+3 2 —dv 2 dx 2 X
—dx:f —+3f —=—fv‘1/2dv+3sin‘1 -
0o V4 —x2 o Vv 0 V22 —x? 0 (2)
pi/2 x| Xy |2
N (XY = |- _ .2 (2
= 1/2+351n(2)0 | 24 —x +351n(2)|0

= [~2V0 + 3sin(D)] - [-2V4 + 35in(0)] = 3 (g) +4

_3 +4
_27'[
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/2
17.[ [cosx — (cos x)?]? sinx dx
-1

Solucion:

Resolvemos la integral aplicando un cambio de variable que simplifica la expresidn.
Sea:

V =cosx = dv = —sinx dx = sinxdx = —dv

Después, se ajustan los limites de integracién. Cuando x = —m, entonces v =
s . TT.

cos(—m) = —1ycuandox = — setiene v = cos(— E) = 0. Por lo tanto,

f [cosx — (cos x)?]? smxdx—f (v —v2)?%(—dv) = — f (v —v?)?%dv
1 1 °

_ 4 —|_Z —
f(v 2v3 +v¥)dv = | v3 +2v 517

-1

o[ o fen]= i

30

64 %
— —dx
L Vx- Yz

Solucion:

18.

Evaluamos la integral definida aplicando el cambio de variable,
v="%x = v =x = dx = 6v5dv

64 &% 64 (x)1/6 64 (v6)1/6
——=dx = ﬂdx = 6Y1/2 611/3 dx
1 Vx—3x 1 (0 (x) M COREE (D)

J-64—
= 3
1 v

664v4d
_Lv—lv

Aplicamos division larga,

64 6

d (65d)—6f LA
—pz v = , v2w-1) v
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64 6x 64 1
L3dx=6f (v3+v2+v+1+ )dv
1 Ve=Vx 1 v—1

3 64
= §v4+2v3 +3v2+6v+6In(v—1)

1
64
1

= L)' +2(45)° +3(45)" + 64 + 6n(3F - 1)

64
1

= | ()" + 23 + 3V + 63F + 61n(3F — 1)

= E(i/@)2 +2v64 + 3364 + 6Y64 + 61n(V64 — 1)]
— E(iﬁ)z +2V1+3V1+6V1+6In(Vi- 1)]}

= {[24+ 16 +12+ 12+ 6In(1)] — B+2 +3 +6+61n(0)]}

25
= [64] — [7 + OO] = oo diverge

4
19 f?” CcoS X d
. X
% sinZ x V1 + sin? x

Solucion:

Observamos que la integral no puede resolverse directamente. Por tanto, aplicamos
un cambio de variable para simplificar la expresion.

v =sinx =3 dv = cosx dx

Sustituyendo, se obtiene,

4 4
37 cos X 3" dv
dx = e
% sinZ x V1 + sin% x % 241 + v2

Aunque la técnica de sustitucidon trigonométrica constituye una posible via de
resolucion (no se aborda en el presente capitulo), se opta por un procedimiento
alternativo basado en un cambio de variable que permite simplificar la integral.

u=- > v=— > dv:——zdu
v u u
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1

4 4— 4-
fi" cosx d (——du f
X =
% sinZ x V1 + sin? x E
_ u2 1+ F

—TL'
f ,u2+1 f \/u2+ _% u2+1
u2

Nuevamente aplicamos un cambio de variable,

1
t=u®+1 = dt = 2udu = udu=§dt
3m cosx 11 1 (3" -
f dx = — —=dt = ——f t~1/2q¢ = |t1/2|,3;
T sin?xV1+sin?x z Vt 2 2 z 3

Finalmente, sustituimos las variables y evaluamos la integral definida,

An
L 1 2 1402
3 cos x v
| o= | - -
T sin2 xv1 + sin2 x U
3 ™
3

B m3 m
B 3 sinx |z
3
2 2
RENEGRTN
2 2
_V3 V3 V3| \¥3
2 2 2 2
4
f?“ cosx p \/7+\/7 237
X =—+ —=|= —
% sinZ x V1 + sin% x 3 3] V3
22x+3d
—dx
o\/4—x2
Solucidn:

Descomponemos la integral en dos términos, utilizando la linealidad de la integral:
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dx

f2x+3d fz 2x d+f2 3
x = X

o\/4-—x2 0\/4—x2 0 4 — x2
Para resolver la primera integral aplicamos un cambio de variable, y para la segunda
usamos el teorema 1.11, en consecuencia,

v=4—x2 = dv = —2xdx = 2xdx = —dv
2x+3 f fz dx fz x
+3| ———==-| v¥2dv+3sin!(=
fo —x2 o 1/22 — x2 0 (2)
pl/2 x| Xy |2
N . _ .2 (2
1/2+351n(2)0 | 24 —x +3sm(2)|0

= [~2V0 + 3sin(1)] - [-2V4 + 35in(0)] = 3 (g) +4

“lr+a
_27'[
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Capitulo 2:
Técnicas de
integracion
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2.1. Integracion por partes.

En esta seccidn se inicia con un par de integrales que ya estan en capacidad de
resolver. Primero evaluamos lo siguiente.

fe‘xdx =—e*+C
Esto fue bastante simple. A continuacién, vamos a examinar,
2 1 2
xe* dx = Eex +C

Para hacer esta integral se utilizé los pasos de la integracidn por cambio de variable.
De nuevo, bastante simple de hacer siempre que recuerdes cémo hacer cambio o
sustitucion de variable. Por cierto, hay que asegurarse de que pueden realizar este
tipo de sustituciones de manera rdpida y sencilla. A partir de ahora se sugiere
realizar este tipo de sustituciones mentalmente. Si tienes que detenerte a escribirlas
en cada problema, veras que te llevara mucho mas tiempo resolverlos, aunque si
realizan los pasos no debe afectar la respuesta al ejercicio.

Suponga que la integral a evaluar es,
fxze“dx

Es obvio que este tipo de integral no se puede evaluar mediante los pasos de la
integracion por cambio de variable. En consecuencia, para este tipo de problemas
se debe utilizar la técnica de integracién por partes. Dicha técnica se basa en la
derivada del producto de dos funciones, definida por:

D:[f(x)g()] = f(x)g'(x) + g()f' (x)
f)g'(x) = De[f(x)g ()] = g(O)f" (x)

Aplicando integrales en ambos extremos de la ecuacidn, se tiene que;

f F()g () dx = f D,[f () g (0)]dx - f 9GIf )

f FOOg @dx = F)gGx) — f 9OOf @)

Otra manera sencilla de entender la integraciéon por partes es realizando unos
cambios de variables elementales,
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u=f(x) = du = f'(x)dx

dv = g'(x)dx > v=g(x)

Finalmente, la ecuacion de integracién por partes se define como,

fudv =uv — f vdu (2.1)

En los siguientes ejercicios resueltos se aplica la técnica de integracidn por partes, e
inclusive se utilizan los teoremas tratados en el capitulo 1.

1.fx\/x + 3dx

Solucion:

Se definen los valores de u y dv:

u=x dv = vVx + 3dx

Procedemos a derivar u e integrar dv (se realiza cambio de variable z=x 4+ 3y
dz = dx)

2 2
du = dx v=f\/x+3dx=le/2dz=§z3/2=§(x+3)3/2

2 2
fx\/x+3dx=uv—fvdu=x-§(x+3)3/2—fg(x+3)3/2dx

2 2 2
= Zx(x¥3) -3¢ Vx¥3) +C

= Zx(VETE) (VX TE)

X
2 [
2x—5
Solucion:

Se definen los valores de u y dv:
dx

V2x —5

u=x dv =
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Se procede a derivar u e integrar dv (se realiza cambio de variable z = 2x -5y

dz = 2dx, porlo que dx = %dz)

dx 1 1
du = dx v=f—=—fz‘1/2=—-221/2= 2x — 5)1/2
V2x -5 2 2 ( )
x
—dx=uv—fvdu=x 2x—51/2—f2x—51/2dx
| = (@x=9)7 J@x=9)
1 1 2
= xV2x — —Efz‘1/2=xv2x—5—§-§zl/2

1
=xV2x=5-3 (2x—5)%?+cC

1
=x\/2x—5—§(\/2x—5)3+C

3.fln 4x dx

Solucién:
Se definen los valores de u y dv:

u=In4x dv = dx

Se procede a derivar u e integrar dv

dx
du =— v=fdx=x
X

d
fln4xdx=uv—fvdu=x1n4x—fx-7x=xln4x—fdx

=xlndx —x+C

4, f xe3*dx

Solucion:
Se definen los valores de u y dv:
u=x dv = e3*dx

Se procede a derivar u e integrar dv
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1
du = dx v=fe3xdx=§e3x

fxe3xdx = uv—fvdu = x-le“ - fle“dx = lxe“ —l-le“ +C
3 3 3 3 3
1 1
— 3x _ _ p3x C
3xe 9e +

5.fxsinxdx
Soluciodn:
Se definen los valores de u y dv:
u=x dv =sinxdx
Se procede a derivar u e integrar dv
du =dx v=fsinxdx=—cosx
fxsinxdx = uv—fvdu =x-(—cosx) —f—cosxdx

= —xcosx +sinx+C
6.fxcos4-xdx
Solucidn:
Se definen los valores de u y dv:
u=x dv = cos4x dx
Se procede a derivar u e integrar dv

1
du =dx v=fcos4xdx=zsin4x
1. 1.

fxcos4xdx = uv—fvdu = x-Zsmél-x—stmé}xdx

—1'4114+C— '4+1 4x + C

—4x51n X 7 4cos ve —4xsm X 16cos v

Existe otro método interesante en la técnica de integracidon por partes conocido
como tabular. Este método se utiliza para integraciones por partes sucesivas, es
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decir, integrar por partes varias veces consecutivas. Los tipos de integrales deben
ser de los siguientes tipos:

fp(x)sinkxdx, fp(x)coskxdx y fp(x)ek"dx

Donde, p(x) es un polinomio de grado n = 1. Al tratarse de una integracién por
partes debemos escoger adecuadamente los valores de u y dv. Esto quiere decir
que u deber derivada n veces hasta que su Ultima derivada sea 0, mientras que las
integraciones sucesivas se terminan justo aqui. Por ejemplo, los ejercicios 4, 5y 6
de esta seccién también era valido aplicar el método de integracién por partes
tabular, pero, a partir del ejercicio 7 seran resueltos mediante este tipo de
integraciones sucesivas, siempre que se cumpla con cualquiera de los tipos de
integrales que contienen un polinomio y una expresién trigonométrica (seno y
coseno) o expresion exponencial.

7. f x? sin 4x dx

Solucion:

Se definen los valores de u = x? y dv = sin 4x para derivar e integrar de manera
sucesiva hasta que la derivada de u sea 0, entonces:

Sienos Uy sus dvy sus
& derivadas integrales
+ | » x? sin 4x
1
- —> 2x ~2 cos 4x
'S 1
+ —> 2 T sin 4x
1
- 0 A 7 cos 4x

Finalmente, se obtiene la solucion:

1 1 1
fxz sin 4x dx = x? (—Zcosél-x) — Zx(—Esinélx) + 2(acos4x) +C

—124+1'4+1 4x +C
= Zx COS 4X gxsmx §COS X
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8.fx3 cos 3x dx

Solucion:

Se definen los valores de u = x3 y dv = cos 3x para derivar e integrar de manera
sucesiva hasta que la derivada de u sea 0, entonces:

. Uy sus dvy sus
Signos derivadas integrales
+ ——» x3 cos 3x
\A 1
- —4—» 3 —sin 3x
A 1
+ | 5 6x —3 cos 3x
_ 6 a1
Ly o7 sin3x
|
+ 0 g1 oS 3x

Finalmente, se obtiene la solucion:

f 3 3y dir = 3(sin3x)_|_3 2(cos3x) p (sin3x) 6(cos3x)+C
x°cos3xdx = x 3 X 5 X 7 81

—13'3-}-12 3 2 in3 2 3x+C
= 3X%sin3x + 2x% cos 3x — 5xsin 3x — - cos 3x

1 1
= 6(3x3 —2x)sin3x + ﬁ(%c2 —2)cos3x+C

9. f x3 sinx dx

Solucion:

De manera similar a los ejercicios 7 y 8 se definen los valoresde u = x3 y dv = sinx
para derivar e integrar de manera sucesiva hasta que la derivada de u sea 0,
entonces:
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Sienos Uy sus dvy sus
& derivadas integrales
+ ——> 8 sinx
- ——> 3x? A coSs x
+ ——> 6 A _sinx
- 1 6 A coS x
+ 0 A sin x

Finalmente, se obtiene la solucion:

fx3 sinx dx = x3(— cos x) + 3x%(sinx) + 6x(cosx) — 6sinx + C

= —x3cosx + 3x%sinx + 6xcosx — 6sinx + C

= (6x —x3)cosx + (3x%2 —6)sin3x + C

1O.fx3e"dx

Solucion:

Se definen los valores de u = x3 y dv = e* para derivar e integrar de manera
sucesiva hasta que la derivada de u sea 0, entonces:

Sienos Uy sus dvy sus
& derivadas integrales
+ 5 A8 e*
- —4—» 3x2 T ex
+ 1 » 6x e*
- 6 T o
+ 0 e*

Finalmente, se obtiene la solucion:
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fx3exdx = x3(e*) — 3x%(e¥) + 6x(e*) —6(e*) + C

= x3e¥ — 3x%e* + 6xe* —6e* +C

=@x3-3x2+6x—6)e*+C

erx
1. | ———d
f(2x+1)2 x

Solucion:

Se definen los valores de u y dv:

dx

we e T x 12

Se procede a derivar u (derivada del producto de dos funciones) e integrar dv (se

realiza cambio de variable z = 2x + 1y dx = %dz)

du = (2xe?* + e**)dx v=fL=1fz‘2dz= -
2x+1)2 2 202x + 1)
f xe?* Dy = f dit = 3o 1 (2xe?* + e?*)dx
Qx+ X T W T Jran=xe [ 2(2x+1)] 22x+ 1)
xe?* e?*(2x + 1)dx xe?* 1
=- +f =— +—f e**dx
22x+ 1) 22x+ 1) 202x+1) 2
3 xe?* +1 12x+C— xe?* +1 2 4
T T 2x+ D T22°¢ T T 22x+ D Ta¢
x3ex’
12. | —————=d
GZ+1)2
Solucién:

Antes de aplicar la integracion por partes se debe realizar el proceso del cambio de
variable:

1
z=x2 > dz = 2xdx > xdx = Edz
1
x3e*’ = x%e** xdx [z’ (7‘12) 3 1[ ze” 4
Cr 2T ) v ) T @rD?  2) @y

Se utiliza la técnica de integracién por partes, y se definen los valores de u y dv:
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dz

u = ze? d'U:m

Se procede a derivar u (derivada del producto de dos funciones) e integrar dv (se
realiza cambio de variablew =z + 1y dw = dz)

dz 1
= z z = _— -2 = —
du = (ze* + e*)dz v—f(z+1)2 fw dw Z+D

2
x3e*

CarE %fmd”%[“”‘f”d”]

{ [ (+1)] f (Ze(zie:))dz}

2
_1 +f “(z+1dz| 1 [ ze* +f Zd]
2| (z+1) z+D | 20+ ") ¢*
1 ze* ter 4l = —ze? +ez(z+1) C
2T+ "¢ ]_ z+1 *3
_1'—zez+zez+ez]+c _1 e’ s _1 e*’ +C
21 z+1 P 2z+1 0 M 2x2+41
13.fx2"dx
Solucidn:

Se definen los valores de u y dv:
u=x dv = 2*dx

Se procede a derivar u e integrar dv:

2x
du = dx v=f2xdx=m
fxzxdx=uv—fvdu—x ﬁ— ﬁdx=x—2x—if2xdx
In 2 In 2 In2 In2
_ x2* 1 2 _ x2* 2%

+Cl=——-——+cC
"z In2 1n2 In2 (ln2)2+

14. f x5e*’ dx

Solucion:
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Se definen los valores de u y dv:
x2
u=x dv = xe* dx
Se procede a derivar u e integrar dv (se realiza cambio de variable z= x? y
. . 1
derivando se obtiene xdx = Edz):

du = 4x3dx v=fez(1dz) =1fezdz=lez=le"2
2 2 2 2

1 1
foexzdx =uv — f vdu = x* -Eexz - fzex2(4x3dx)

1 1
= Ex“e"2 — f 2x3eX’dx = Ex“e"2 - f x? - 2xe*’ dx

Nuevamente (segunda integracion por partes) se definen los valores de u y dv:
u=x?2 dv = 2xe*’dx

Se procede a derivar u e integrar dv (se repite lo realizado en la primera integracién
por partes, pero dz = 2xdx):

du = 2xdx v = f e?dz = e? = e*°
2 1 2 2 1 2
foex dx = Ex“e" —fxz < 2xeXdx = Ex“e" — (uv—fvdu)

1
= Ex“e"2 — (xze"2 - f e*’ -2xdx)

2 2 2
=Ex4e" —x%e*" +e* +C

15. f In? x dx

Solucién:
Se definen los valores de u y dv:
u = (Inx)? dv = dx

Se procede a derivar u e integrar dv:

2lnx
du = dx v:fdx:x

X
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2Inx

flnzxdx=uv—fvdu=x-(lnx)2—fx- dx=x1n2x—2flnxdx

Nuevamente (segunda integracion por partes) se definen los valores de u y dv:
u=Inx dv =dx

Se procede a derivar u e integrar dv:

1
du = —dx v:fdx:x

x
flnzxdx=xln2x—2flnxdx=xln2x—2(uv—fvdu)

1
=xln2x—2(xlnx—fx-;dx)=x1n2x—2xlnx+2fdx

=xIn?x—2xlnx+2x+C

16. f e? sin 46 do

Solucion:
Se definen los valores de u y dv:
u=e? dv = sin 46 do

Se procede a derivar u e integrar dv:

1
du = e?de v=fsin49d9 :_ZCOS49
_ 1 1
feesm49d9 =uv—fvdu=e9-(—Zcosél-@)—f—zcosél-@-eedg

=L 49+1f9 40 do
= 46 COS 2 e” CoSs

Nuevamente (segunda integracion por partes) se definen los valores de u y dv:
u=ef dv = cos 46 df

Se procede a derivar u e integrar dv:

1
du = e?de v= f cos 46 do = Zsin49
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. 1 1
fe sin 46 d6 =—Ze9cos49+zfeecos49d9

Lo 49+1( f d)
Ze COoSs Zuv vdu

Lo 49+1(9 1'49 fl' 40 9d9)
46 COS 2 e 4-Sll’l 4'Sll’l e

Lo 49+1 9 sin 46 1[‘9'49(1
46 COS 166 Sin 16 e” Sin X

Como se puede observar, la Ultima integral es semejante a la integral original, por
lo tanto:

(1+1)f9'49d9— Lo 49+1 ¥sin46 + C
6 e sin = 4e cos 16e sin
Finalmente,

f 0 si 40d9—16( Lo 460 + L. 49+C)
e” sin —17 46‘ COS 168 Sin

o 4(;1+1 0 si 49+16C
176 COS 176 Sin 17

o 4(;1+1 fsin46 + C
176 COS 176 Sin 1

17.fsin(lnx) dx

Solucién:
Se definen los valores de u y dv:
u = sin(ln x) dv = dx

Se procede a derivar u e integrar dv:

1
du=cos(lnx)-;dx v=fdx=x

1
fsin(lnx) dx = uv — f vdu = sin(lnx) - x — f x - cos(Inx) -;dx
= xsin(lnx) — f cos(Inx) dx

Nuevamente (segunda integracion por partes) se definen los valores de u y dv:
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u = cos(lnx) dv =dx

Se procede a derivar u e integrar dv:

1
du=—sin(lnx)-;dx v=fdx=x

f sin(Inx) dx = xsin(Inx) — (uv — f vdu)

= xsin(lnx) — [cos(ln x) x — f X (_ sin(In x)) dx]

x
= xsin(lnx) — xcos(lnx) — f sin(In x)
Observemos que la ultima integral es semejante a la integral original, por lo tanto:
1+1) f sin(lnx) dx = xsin(Inx) — x cos(lnx) + C
Finalmente,

f sin(lnx) dx = %[x sin(Inx) — x cos(Inx) + C]

I 1 ! 1 +1C
—Exsm(nx) Excos(nx) >

1
= Ex[sin(ln x) —cos(Inx)] + C;

18. f sin x cos 2x dx

Solucién:
Se definen los valores de u y dv:

u =sinx dv = cos2x dx

Se procede a derivar u e integrar dv:

1
du = cosxdx v=fc052xdx=zsin2x

1 1
fsinxcostdx=uv—fvdu=sinx-Esian—fEsian-cosxdx

1 1
= Esinxsian—Efsiancosxdx
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Nuevamente (segunda integracion por partes) se definen los valores de u y dv:

U = CoSXx dv = sin2x dx

Se procede a derivar u e integrar dv:

1
du = —sinxdx v=fsin2xdx=—§c052x

1 1
fsinxcostdx =§sinxsin2x—§(uv—fvdu)

1 17 1 1
=—sinxsian—E[—EcostOSZx—fisinxCOSZxdx

1 1 1
= —sinxsin2x+—cosxc052x+Zfsinxc052xdx

Como se puede observar, la Ultima integral es semejante a la integral original, por
lo tanto:

1 1 1
(1 _Z) f sinx cos 2x dx = zsinxsian +Zcosxcos 2x+C
Finalmente,

411 1
fsinxcostdx =§[§sinxsin2x +Zcosxc052x+ C

2 1 4
= —sinxsin2x+§cosxc052x+§C

1
= §sinxsin2x+§cosxc052x+ C;

19. f tan~ ! x dx

Solucion:
Se definen los valores de u y dv:
u=tan"1x dv = dx

Se procede a derivar u e integrar dv:

dx
du=x2+1 v=fdx=x
dx xdx
ftan‘lxdx=uv—fvdu=x-tan‘1x—fx =xtan‘1x—f—
x2+1 x2+1
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En la dltima integral se aplica cambio de variable:

1
w=x*+1 = dw = 2xdx = xdxzzdw
1
5dw 1 (dw
ftan‘lxdx=xtan‘1x— £ _=xtanlx—=| —
w 2) w

_ -1 _1 _ -1 _1 2
=xtan"'x 2an+C—xtan x 2ln(x +1)+C

ZO.fe‘“9 cos 26 do

Solucién:
Se definen los valores de u y dv:

u=e*® dv = cos 260 d@

Se procede a derivar u e integrar dv:
1
du = 4e*?do v= f cos 26 d6 = Esin 20
1 1
fe“e cos20d0 = uv — f vdu = e*? - (Esm 29) - f S sin 20 - 4e*9do
1
= Ee”‘e sin26 — 2 f e*?sin 260 do

Nuevamente (segunda integracion por partes) se definen los valores de u y dv:
u=e* dv = sin 26 d6

Se procede a derivar u e integrar dv:

1
du = 4e*?do v= f sin 20 d@ = — 5 cos 20
1
f e*? cos20do = 5646 sin26 — 2 (uv - f vdu)
1 1
= Ee”‘e sin 26 — 2 (—Ee‘“9 cos20 + 2 f e*? cos 20 dB)

1
= Ee”‘e sin 20 + e*? cos 26 — 4[ e*? cos 20 dx
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Como se puede observar, la Ultima integral es semejante a la integral original, por
lo tanto:

1
1+4) f e*? cos26dh = Ee“g sin 26 + e*? cos 20 + C
Finalmente,

1/1
feesin49d9 =§(§e"‘9 sin 20 + e*? cos 26 + C)

1 1 1
= Ee“e sin 20 +§e49 cos 26 +§C

1 1
= Ee“e sin 26 + ge”‘g cos 26 + C,

2.2. Integracion de potencias de funciones trigonométricas.

En esta seccion se analizan y resuelven ejercicios de integraciéon de potencias
superiores de sin x, cos x, sec x, tan x, y de productos de potencias. A continuacién,
se describen los casos de integracién de potencias de funciones trigonométricas.

Caso 1: Integrales de potencias impares de seno y coseno
) f sin™ x dx o (ii) f cos™ x dx, donde n es un niUmero entero positivo impar
(i) Factor:

(n-1)
sin® x dx = (sin® ! x)sinxdx = (sin?x) 2 sinxdx

(n-1)

=(1—cos?x) 2 sinxdx
(ii) Factor:
(n-1)
cos™ x dx = (cos™ 1 x)cosxdx = (cos®?x) 2 cosxdx
(n—-1)
=(1-sin®?x)" 2 cosxdx
Caso 2: Integrales de productos de potencias de seno y coseno

f sin™ x cos™ x dx, en la que m 0 n es un nimero entero positivo impar y para

la solucidn de este caso se debe aplicar el método explicado en el caso 1.
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(i) Sin es impar, entonces:

sin™ x cos™ x dx = (sin® ! x) cos™ x sin x dx
. (n-1) ,
= (sin®x) 2 cos™ x sinx dx

(n-1) ,
=(1—cos?x) 2 cos™xsinxdx
(ii) Si m es impar, entonces:

sin™ x cos™ x dx = sin™ x (cos™ ! x) cos x dx
_ (m-1)
=sin"x (cos?x) 2 cosxdx
. . (m-1)
sin"x (1 —sin?x) 2 cosxdx

Cuando las integrales de potencias de seno y coseno no son impares es imposible
aplicar los casos 1y 2, para lo cual se debe emplear las siguientes dos identidades
trigonométricas:

1
sin? x = 5 (1 — cos 2x)

1
cos?x = 3 (1 + cos 2x)

Caso 3: Integrales de potencias pares y productos de potencias de seno y coseno
() f sin™ x dx, (ii) f cos™ x dx o (iii) f sin™ x cos™ x dx donde my nson
ndmeros enteros positivos pares
(i) Factor:
n
1 2
sin® x dx = (sin? x)™?dx = [E (1 —cos Zx)] dx

(ii) Factor:
n

1 2
cos™ x dx = (cos? x)™?dx = [E (1 + cos Zx)] dx

(iii) Factor:

sin” x cos™ x dx = (sin? x)™?(cos? x)™/?dx

= E (1 —cos 2x)]% E (1 + cos Zx)]% dx
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Caso 4: Integrales de potencias de tangente y cotangente
) f tan™ x dx o (ii) f cot™ x dx, donde n es un nimero entero positivo

(i) Factor:
tan® x dx = (tan"2 x) tan? x dx = (tan™"2 x)(sec? x — 1)dx
(ii) Factor:

cot" x dx = (cot" 2 x) cot? x dx = (cot" 2 x)(csc? x — 1)dx

Caso 5: Integrales de potencias pares de secante y cosecante
) f sec™ x dx o (ii) f csc™ x dx, donde n es un nimero entero positivo par
(i) Factor:
sec" x dx = (sec" % x)sec’? x dx = (sec x) (sec x)dx
= (tan?x + 1) (sec x)dx
(ii) Factor:
csc™ x dx = (csc™ 2 x) csc? x dx = (csc x) (csc x)dx

= (cot?x + 1) (csc x)dx

Caso 6: Integrales de productos de potencias pares de tangente, secante,
cotangente y cosecante.

) f tan™ x sec™ x dx o (ii) f cot™ x csc™ x dx, donde n es un nimero entero

positivo par
(i) Factor:

tan™ x sec™ x dx = tan" x (sec™? x) sec® x dx
= tan" x (sec? x) (sec x)dx

= tan™ x (tan? x + 1) (sec x)dx
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(i) Factor:

(m-2)
cot™ x csc™ x dx = cot™ x (csc™ 2 x) csc? x dx = cot® x (csc?x) 2 (csc? x)dx

(m-2)
cot®x (cot?x +1) 2 (csc?x)dx

Caso 7: Integrales de productos de potencias impares de tangente, secante,
cotangente y cosecante.

) f tan™ x sec™ x dx o (ii) f cot™ x csc™ x dx, donde n es un nimero entero
positivo impar

(i) Factor:

tan™ x sec™ x dx = tan" ! x (sec™ ! x) secx tan x dx
n-1
= (tan?x) 2 (sec™ 1 x)secxtanxdx
n-1
= (sec?x — 1)z (sec™ ' x)secxtanxdx

(ii) Factor:

cot™ x csc™ x dx = cot™ ! x (csc™1 x) cscx cot x dx
n—1
= (cot®? x) 2 (csc™ 1 x)cscx cotx dx

n—1
= (csc?x — 1) 2 (csc™ 1 x) cscx cotx dx

Caso 8: Integrales de potencias pares de secante y cosecante
) f sec™ x dx o (ii) f csc™ x dx, donde n es un nimero entero positivo impar

Aplicar la técnica de integracién por partes:

(i) Considere u = sec® 2 x y dv = sec? x dx

(ii) Considere u = csc™ 2 x y dv = csc? x dx

Caso 9: Integrales de productos de potencias pares e impares de tangente, secante,
cotangente y cosecante.
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) f tan™ x sec™ x dx o (ii) f cot™ x csc™ x dx, donde n es un nimero entero

positivo par y m es un nimero entero positivo impar. Se debe expresar el
integrando en potencias impares de secante o cosecante y después aplicar la técnica
de integracién por partes.

(i) Factor:

n n
tan™ x sec™ x dx = (tan? x)2 sec™ x dx = (sec? x — 1)Z sec™ x dx

(ii) Factor:
n n
cot™ x csc™ x dx = (cot? x)Z csc™ x dx = (csc? x — 1)2 csc™ x dx

A continuacion, se desarrollan ejercicios de integracién de potencias de funciones
trigonométricas en las que se utilizan los 8 casos descritos en esta seccién.

1.fsir13 4x dx

Solucion:

Este problema se emplea el caso 1 de integral de potencia impar de seno

f sind 4x dx = f sin? 4x sin 4x dx = f(l — cos? 4x ) sin 4x dx

fsinél-x dx—fcos2 4x sin 4x dx

1
— 7 cos 4x — f(cos 4x)? sin 4x dx
Se aplica el método del cambio de variable, donde:

1
u = cos 4x =3 du = —4sin4x dx > sinxdx=—zdu

Por lo tanto,

fsin34xdx= —lcosél-x—fu2 (—ldu) = —lcos4x+lfu2du
4 4 4 4

—14+113+C— 3414+C
= 4-COS X 2 3u —12COS X COS 4Xx
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2.fc055xdx

Solucion:

Este problema se emplea el caso 1 de integral de potencia impar de coseno

fcossxdxzfcos‘*xcosxdx:f(l—sinzx)zcosxdx

= f(l—Zsinzx + sin? x) cos x dx

fcosxdx—2[sinzxcosxdx+fsin4xcosxdx

sinx — 2 f(sin x)2cosxdx + f(sin x)* cosx dx

Se aplica el método del cambio de variable, donde:
u =sinx = du = cosxdx

Por lo tanto,

) ) 1 1
fcossxdx=51nx—2fu2du+fu4du=smx—2-§u3+§u5+C

1 . 2 .
=§sm x—gsm3x+smx+C

Vs
3.[ cos3 x dx
0

Solucion:

Este problema se procede a eliminar los valores absolutos, y se observa que se trata
del caso 1 de integral de potencia impar de coseno

T

T /2
f cos3xdx=f cos3xdx+f —cos3® x dx
0

0 /2

s

/2
= f cos? x cos x dx —f cos? x cos x dx
0 /2

/2 b4
= f (1 —sin? x) cos x dx — f (1 —sin? x) cos x dx
0 /2

Se aplica el método del cambio de variable, donde:
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u =sinx > du = cosxdx

Por lo tanto,

T /2 T 1 % 1 b4
f cos3xdx=f (1—u2)du—f (1—u2)du=|u——u3 —|u——u3
0 0 n 3 1 3 Iz
2 2
Vs
1 2 1 T
= |sinx — =sin®x| — sinx——sin3x
0
NEER I REn
= sinz — 5 sin’> sin 3sm ]

(s - 3oi) - sn - 35n' )
i sinm §Sll’l T sm— §Sl E ]

RN

4, f sin3 x cos® x dx

Wl

Solucion:

Este problema se emplea el caso 2 de integral de productos de potencia de seno y
coseno. Se puede usar cualquiera de los dos factores que se proponen, pero se va a
utilizar el factor (ii).

f sin® x cos® x dx = f sin® x cos x cos? x dx = f sin® x cos x (1 — sin? x )dx
= fsin3xcosxdx —fsinsxcosxdx

Se aplica el método del cambio de variable, donde:
u =sinx = du = cosxdx
Por lo tanto,

1 1
fsin3xcos3xdx=fu3du—fu5du=1u4—gu6+6

1 1
= Zsin4x—gsin6x+ C

5. f sin® 2x cos? 2x dx
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Solucion:

Este problema se emplea el caso 2 de integral de productos de potencia de seno y
coseno. Se puede usar cualquiera de los dos factores que se proponen, pero se va a
utilizar el factor (i).

f sin® 2x cos? 2x dx = f sin 2x (sin? 2x)? cos? 2x dx
= f sin 2x (1 — cos? 2x)? cos? 2x dx
= f sin 2x (1 — 2 cos? 2x + cos* 2x) cos?® 2x dx
= f cos?2xsin2x dx — 2 f cos* 2x sin 2x dx

+ f cos® 2x sin 2x dx
Se aplica el método del cambio de variable, donde:
U = cos 2x = du = —2sin2xdx = sin2x dx = —Edu

Por lo tanto,

1 1 1
fsinSZJccos2 2xdx=fu2 (—Edu)—2fu4(—§du)+fu6(—5du)

1 1
=—§fu2du+fu4du—zfu6du
11 1 11
- __._q3 a5 .07 I
> 3u +5u > 7u +
1
6

cos3 2x + 1cos5 2x — icos7 2x +C
5 14

6.[ sin* 3x dx

Solucion:

Este problema se emplea el caso 3 de integral de potencia de seno y coseno. Se
emplea el factor (i).

2
a4 — T2 2 — l _ — l — 2
sin*3x dx = | (sin® 3x)*dx = > (1 —cos6x)| dx = 7 (1 — cos6x)“dx
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1
f sin* 3x dx = Zf(l — 2.cos 6x + cos? 6x)dx

Lt cosore 1 feostxa
=7 | dx—5 | cosbxdx+7 | cos”6xdx
En la dltima integral se aplica el caso 3 de integral de potencia de seno y coseno. Se

emplea el factor (ii). Por lo tanto,

f'43al—1 11'6+1f1(1+ 12x)d
Sin X x—4x 2 651n X 2 2 CosS xX)ax

1 1 1 1
=Zx—ﬁsm6x+§fdx+§fc0512xdx
1 1 1 1 1
=Zx—ﬁsm6x+§x+§-ﬁsm12x+C
3 1 1
=§x—ﬁsm6x+%sm12x+C

7.[ cos®20do

Solucion:

Este problema se emplea el caso 3 de integral de potencia de seno y coseno. Se
emplea el factor (ii).

1 3
fcos6 20d6 = f(cos2 20)3d0 = f [E (1 + cos 49)] dx

1
= gf(l + 3 cos 48 + 3 cos? 40 + cos3 40)do

—1fd9+3f 49d9+3f 249d9+1f 340d0o
—g g Cos g Cos g Cos

En la penultima integral se aplica nuevamente el caso 3 con el factor (ii), y la Gltima
integral se utiliza el caso 1 con el factor (i). Por lo tanto,

f 1 3sin40 3

1 1
6 __ = - - _ 2
cos 29d9—89+8—4 +8f2(1+c0589)d9+8fcos 46 cos 40 d6

o S sinao (a0 42 86 do
“gl 32" 16 16 ) ©°

1
+ gf(l —sin? 40) cos 40 d@

93



3 3 3 1 1
fcos 29d9——9 + —sin 46 +—9 +—- —sm80+8fcos49d9

32 16 8
1
—gf sin? 46 cos 40 d6
59+3 40 + 3 89+11 40
16 ﬁsm mSln § Zsm
1
- §f(sin 40)% cos 40 do

Se aplica el método del cambio de variable, donde:

1
u = sin 46 = du = 4 cos46 do = cos40do = Zdu
Por lo tanto,

f 29d9—59+3 40 + > 849+1 40 1[ z(ld)
cos® 3251n 128sm 32sm 5| ¥z

59+3 49+3 80+1 46 ! 2q
1 ﬁsm mSln ﬁSll’l ﬁ u~au

= > 6+ + 40 + 3 86 11 +C
E ﬁsm mSln ﬁ §u

—59+1'49+ > 86 ! 40 +C
=16 gsin 178 sin %sm

8. f tan? x dx

Solucion:

Este problema se emplea el factor (i) del caso 4 de integral de potencia de tangente

ftan4 xdx = f tan® x tan? x dx = ftan2 x (sec’?x — 1)dx
= f(tan2 x sec? x — tan? x)dx
= f tan? x sec? x dx — f tan? x dx
= f(tan x)?sec?xdx — f(sec2 x — 1)dx

Se aplica el método del cambio de variable, donde:
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U =tanx = du = sec® x dx

Por lo tanto,

1
ftan“xdx=fu2du—fsec2xdx+fdx=§u3—tanx+x+C

1
=§tan3x—tanx+x+C

9. f cot* 3x dx

Solucion:

Este problema se emplea el factor (ii) del caso 4 de integral de potencia de tangente
f cot* 3xdx = fcot2 3xcot?3xdx = f cot? 3x (csc? 3x — 1)dx

= f(cot2 3x csc? 3x — cot? 3x)dx

= f cot? 3x csc? 3x dx — f cot? 3x dx

= f(cot 3x)? csc? 3x dx — f(csc2 3x — Ddx
A la primera integral se aplica el método del cambio de variable, donde:

u = cot3x = du = —3 csc? 3x dx = csc?3xdx = —§du

Por lo tanto,

1
fcot43xdx=fu2 (—gdu)—fcscz 3xdx+fdx

1[ 2d +1 t3 +fd,— 13+1 t3x+x+C
3uu3c0x X = 9u 3COXJC

1 1
—gcot3 3x+§cot3x+x+C

1O.ftan5 2x dx

Solucion:

Este problema se emplea el factor (i) del caso 4 de integral de potencia de tangente
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ftan5 2xdx = f tan® 2x tan? 2x dx = ftan3 2x (sec?2x — 1)dx
= f(tan3 2x sec? 2x — tan® 2x)dx
= ftan3 2x sec?2x dx — f tan3 2x dx
= f(tan 2x)3 sec? 2x dx — f tan 2x (sec? 2x — 1)dx
A la primera integral se aplica el método del cambio de variable, donde:
u = tan 2x > du = 2sec? 2x dx > sec? 2xdx = %du

Para la segunda integral se utiliza el proceso del ejercicio 7, por lo tanto,

1
ftan5 2xdx = fu3 (E du) - f(tan 2x sec? 2x — tan 2x)dx

fu3du—ftan2x sec? 2x dx+ftan 2x dx

R R R —= O~ N= N

1 1
ut — f u(zdu) + Eln(cos 2x)+C

A=

1 1
tan* 2x — Ef udu + Eln(cos 2x)+C

tan* 2 112+1l( 2x)+C
an X 22u 2I‘ICOSX

1 1
= —tan* 2x — Ztan2 2x + Eln(cos 2x)+C

11.ftan6 2x dx

Solucion:

Este problema se emplea el factor (i) del caso 4 de integral de potencia de tangente

ftan6 2xdx = f tan* 2x tan? 2x dx = ftan4 2x (sec? 2x — 1)dx
= f(tan4 2x sec? 2x — tan* 2x)dx

= f tan? 2x sec? 2x dx — f tan? 2x dx
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ftan6 2xdx = f(tan 2x)*sec? 2x dx — f tan? 2x (sec?® 2x — 1)dx
A la primera integral se aplica el método del cambio de variable, donde:
1
u = tan 2x > du = 2sec? 2x dx > sec? 2xdx = Edu
Para la segunda integral se utiliza el proceso del ejercicio 7, por lo tanto,

1
ftan6 2xdx = fu”‘ (E du) - f(tan2 2x sec? 2x — tan® 2x)dx

1 11
=Efu4du—ftan2 2x sec? 2xdx+ftan2 Zxdxz-gus

- f(tan 2x)%?sec? 2x dx + f(sec2 2x — 1)dx

=itan5 Zx—fu2 (ldu)+fsec2 Zxdx—fdx
10 2

—1t52 1[ 2d +1t2 +C
—1Oanx2uu2anxx

—1t52 113+1t2 +C
—1Oanx23u Zanxx

—1t52 1t 32 +1t 2 +C
—1Oanx6anx2anxx

12. f sec* x dx

Solucion:

Este problema se emplea el factor (i) del caso 5 de integral de potencia par de
secante

f sec* x dx = f sec?xsec’? xdx = f(tan2 x + 1)sec? xdx
= f(tan2 xsec? x + sec? x)dx
= f tan? x sec? x dx + f sec? x dx

= f(tanx)2 sec2xdx +tanx + C

Se aplica el método del cambio de variable, donde:
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U =tanx = du = sec® x dx

Por lo tanto,

1 1
fsec“xdx=fuzdu+tanx+6=§u3+tanx+C=§tan3x+tanx+C

13.fcsc“ 3x dx

Solucién:

Este problema se emplea el factor (ii) del caso 5 de integral de potencia de cosecante

f csc* 3xdx = f csc?3xcsc? 3xdx = f(cot2 3x + 1) csc? 3xdx
= f(cot2 3x csc? 3x + csc? 3x)dx
= f cot? 3x csc? 3x dx + f csc? 3x dx

= f(cot 3x)2 csc? 3x dx + (—écot 3x> +C
Alaintegral se aplica el método del cambio de variable, donde:
u=cot3x = du=-3csc?3xdx = csc?3xdx= —%du
Por lo tanto,

1 1 1 1
fcsc43xdx= fuz (—gdu)—5c0t3x+C = —§fu2du—§cot3x+6

11 1

= 3 t3x + C|= ! t33 ! t3x+ C
= 3 3u 3CO X = 9CO X 3CO X

14. f tan® x sec* x dx

Solucion:

Este problema se emplea el factor (i) del caso 6 (m es un numero entero positivo
par) de integral de productos de potencia de tangente y secante. Por lo tanto,

f tan® x sec* x dx = f tan® x (sec? x) sec? x dx
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f tan® x sec* x dx = f tan® x (tan? x + 1) sec? x dx
= f(tan8 x sec? x + tan® x sec? x)dx
= f tan® x sec? x dx + f tan® x sec? x dx
= f(tan x)8sec? x dx + f(tan x)%sec? x dx

Se aplica el método del cambio de variable, donde:

U =tanx = du = sec®> x dx

Por lo tanto,

1 1
ftanﬁxsec“xdx =fu8du+fu6du=§u9+7u7+6

—1t ° +1t “x+C
—ganx 7anx

15. f cot? 3x csc* 3x dx

Solucion:

Este problema se emplea el factor (ii) del caso 6 (m es un numero entero positivo
par) de integral de productos de potencia de cotangente y cosecante. Por lo tanto,

f cot? 3x csc* 3x dx = f cot? 3x (csc? 3x) csc? 3x dx
= f cot? 3x (cot? 3x + 1) csc? 3x dx
= f(cot4 3x csc? 3x + cot? 3x csc? 3x)dx
= f cot* 3x csc? 3x dx + f cot? 3x csc? 3x dx

= f(cot 3x)* csc? 3x dx + f(cot 3x)2 csc? 3x dx
Se aplica el método del cambio de variable, donde:

u = cot3x = du = =3 csc? 3x dx = csc?3xdx = —§du
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Por lo tanto,

1 1
fcot2 3xcsct3xdx = fu‘* (—gdu) +fu2 (_§du)

1 1 11 11
—§fu4du—§fu2du=—§-§u5—§-§u3+C

! t>3 ! t33x +C
15CO X 9CO X

16. f tan® x sec3 x dx

Solucion:

Este problema se emplea el factor (i) del caso 7 (en la que n es un numero entero
positivo impar) de integral de productos de potencia de tangente y secante. Por lo
tanto,

f tan® x sec x dx = f(tan2 x)?(sec? x) secx tan x dx
= f(sec2 x — 1)?sec? x secx tan x dx
= f(sec4 x — 2sec?x + 1) sec? x secx tan x dx
= f(sec6 x — 2sec* x + sec? x) secx tan x dx
= f(sec x)*secxtanx dx — 2 f(sec x)*secxtanx dx

+ f(secx)2 secx tanx dx

Se aplica el método del cambio de variable, donde:

u = secx =3 du = secxtanx dx

Por lo tanto,

1 1 1
ftansxsec3xdx=fuﬁdu—qu4du+fu2du=7u7—2-§u5+§u3+C

_1 7 2 5 +1 3 +C
—7SEC X SSBC X 3S€C X
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17. f cot” zcsc* zdz

Solucion:

Este problema se emplea el factor (ii) del caso 7 de integral de productos de
potencia de cotangente y cosecante. Por lo tanto,

f cot’ zcsc* zdz = f(cot2 z)3(csc® z) csczcotz dz
= f(csc2 z—1)3csc®zcsczcotz dz
= f(csc6 z—3csc*z+3csc?z—1)csc3zesczcotzdz
= f(csc9 z—3csc”z+ 3csc®z —cscd z) csczcotzdz
= f(csc z)°csczcotzdz — 3 f(csc z)’ csczcotzdz

+3 f(cscz)5 csczcotzdz — f(cscz)3 csczcotzdz

Se aplica el método del cambio de variable, donde:

u=cscz = du =—csczcotzdz = csczcotzdz = —du

Por lo tanto,

cot’zesc*zdz = | u®(—du) — 3 | u”(—du) + 3 | uS(—du) — | u3(—du)
J J J [~

—fu9du+3fu7du—3fu5du+fu3du

1 1 1 1
=——u1°+3-—u8—3-—u6+zu4+C

10 8 6
1 3 1 1
= —Ecscloz+§csc82—zcscﬁz+zcsc4z+ C

18.fsec3 6do

Solucion:

Este problema corresponde al caso 8 y utilizamos la integracidn por partes, para lo
cual debemos considerar los valores de u = sec™2? 0 y dv = sec? 6 d#@, es decir,
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u =sech dv = sec?0do
du =secftan6 do v=fsec29d9=tan9

Por lo tanto,

fsec39d9 =fsec95ec29d0=uv—fvdu
= sec9tan9—ftan@(secgtanedg)
=sec9tan9—ftan295ec9d9
=sec9tan9—f(sec29—1)sec9d9

= secfH tan 6 —fsec39d9 +fsec9d9
Se puede observar la semejanza de la integral de sec® 8, en consecuencia:
fsec3 0do + f sec30d0 =secOtanf +In(secd + tanH) + C
Por lo tanto,

1
fsec3 6do = E[sec@tang + In(secf + tan ) + C]

1 1
= Esec@tanQ +§1n(sec9 +tanf) + C;

19.fcsc5 6de

Solucién:

Este problema corresponde al caso 8 para potencias impares de cosecante y se debe
emplear la técnica de integracion por partes, para lo cual se debe considerar los
valores de u = csc™ 28 y dv = csc? 0 d@, es decir:

u=csc30 dv = csc?6do
du = —3csc?6 cschcotl db v =fcsc29d9

du = —3csc3 6 cotf do v=—cotf
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Por lo tanto,

fcsc59d0=fcsc39csc29d9=uv—fvdu
= —csc39cot9—f—cot@(—3csc39cot9 do)
= —csc39cot9—3fcot29csc39d9
= —csc® 0 coth —3f(csc29 —1)csc®9do
:—csc39cot9—3fcsc59d9+3fcsc39d9

Se puede observar la semejanza de la integral de csc® 8, en consecuencia:

fcsc59d0+3fcsc59d9=—csc39cot9+3fcsc39d9

_ ! 39 t9+3f 30de
= ZCSC Cco Z CSC

Y en la integral de csc® 8 se vuelve aplicar el caso 8, para lo cual se debe considerar
los valores de u = csc™ 2 8 y dv = csc? 8 dO, es decir:

u =csch dv = csc?6do
du = —cscfcotf db v=fcsc29d9=—cot9

Por lo tanto,

fcsc39d0 =uv—fvdu=csc9(—cot9)—f—cot@(—cschotG)d@
= —csc9cot9—fcot20csc9d9
= —cscfcoth —f(cscze —1)cscHdo
:—csc9cot9—fcsc39d9+fcsc9d0

= —cscf cotf + In(csch — cot ) — f csc30do

Podemos observar que nuevamente se tienen semejanzas de términos de la integral
csc3 0, en consecuencia,
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fcsc3 0do + f csc30df = —csch cotd + In(csch — cot )

1 1
f csc30dh = —Ecsce cotf + zln(csce —cot8)
Finalmente,

1 3
fcsc59d9 = —chc39cot9 +chsc39d9

_ ! 39 t9+3 ! 6 t9+1l 6 to
= chc co Z[ Ecsc co En(csc cotf)

1 3 3
= —chc39cot9 —gcscecote +§ln(csc9 —cotf)+C

20. f sec® 6do

Solucién:

Este problema corresponde al caso 8 para potencias impares de secante y se debe
emplear la técnica de integracion por partes, para lo cual se debe considerar los
valores de u = sec" 2 0 y dv = sec? 0 d#@, es decir:

u=sec36 dv =sec?0df

Se procede a derivar u e integrar dv:

du = 3sec?0secHtand df v=fsec29d9

du = 3sec®0tanf do v =tan0

Por lo tanto,

fsecSHdG = fsec395ec29d9 =uv—fvdu
=sec3ftanf — f tan @ (3sec® O tan 6 dO)
=sec3ftan 6 — 3ftan2 Osec36do
=sec3ftanf — 3f(sec2 0 —1)sec®6do

=sec39tan9—3fsec59d9+3fsec39d9
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Se puede observar la semejanza de la integral de sec® 8, en consecuencia:

fsec59d9+3fsec59d9=sec39tan9+3fsec39d9

1 3
fsecSHdG =Zsec39tan9 +Zfsec39d9

Y en laintegral de sec® 6 se vuelve aplicar el caso 8, pero ya esa integral esta resuelta
en el ejercicio 18 de esta seccidn, por lo tanto,

1 311 1
fsec59d9=Zsec39tan9 +Z[§sec9tan9 +§ln(sec9+tan9) +C

1 3 3
= Zsec39tan9 +§sec9tan9 +§ln(sec9 +tanf) +C

21. f tan® @ sec® 6 do

Solucién:

Este problema corresponde al factor (i) del caso 9 de productos de potencias
tangente y secante cuando la primera y segunda potencias son par e impar,
respectivamente. Después, se debe emplear la técnica de integracién por partes.

ftan2 Osec®0do = f(sec2 0—1)sec®0do = fsec5 0do — f sec3 0do
Las integrales sec® @ y sec® @ fueron resueltas en los ejercicios 20 y 18,

f tan? @ sec® 6 dO
1 3 3
= Zsec3 Otan 6 + 55ec9tan9 + gln(sece + tan9)

1 1
—Esecatang —Eln(seca +tanf) + C

1 1 1
ftanzesecz’gda =Zsec39tan9 —gsecetanH —gln(sece +tand) + C

2.3. Integracidn por sustitucion trigonométrica.

En esta seccion aprenderemos integrales (tanto indefinidas como definidas) que
requieren un cambio de variable mediante sustituciones trigonométricas y como
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pueden ser utilizadas en la simplificacion de ciertas integrales. Existen tres formas

de evaluar por sustitucién trigonométrica, tales como: Va2 — v?, VvaZz +v? y

Vv? —a? enlaque a > 0. A continuacion, se describen los tres casos:

Caso 1: Integrales de expresiones que involucran va? — v?

Se establece la sustitucién trigonométrica a partir de las relaciones del seno y

coseno, es decir:

<6<

T
T

v
sinf = — ES v=asing; —
a

2 2
vaz —v
cos=——— = +Ja?—v2=acosh

a

Ademas, que:

6 =sin™? (Z)

Caso 2: Integrales de expresiones que involucran va? + v?

(a2 — 2

v

Se establece la sustitucién trigonométrica a partir de las relaciones de tangente y

secante, es decir:

v T
tanH:E > v=atan9;—§S9S

T

va? +v?
sec) =— = Ja?+v?=asech

a

Ademas, que:

6 =tan ! (Z)

Caso 3: Integrales de expresiones que involucran Vv? — a?

va?+v?

Se establece la sustitucion trigonométrica a partir de las relaciones de secante y

tangente, es decir:

<6<

N

v
secl =— E v=asecl; —
a

T

,IUZ_aZ
tand =—— = +v?2—a?=atanh

a

Ademas, que:
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0 =sec™?! (Z)

A continuacién, se desarrollan ejercicios de integracién mediante el uso de los tres
casos de integracién por sustitucidn trigonométrica.

L f dx
) x2VE —x2
Soluciodn:

Este problema corresponde al caso 1 de sustitucidon trigonométrica. La figura
muestra el tridangulo rectangulo del caso 1, en la que se identificav = xya = 2. Por
lo tanto,

x =2sin0 = dx =2cos6db

Y x

2% —x2=2cos0

Sustituyendo y simplificando, queda:

2cosBdo f de

f dx _ _ lf 20 do
x2Va—x2 J (2sin0)2(2cosh) ese

4sin20 4
—1 td)+C = ! to+C
_Z( cotf) = ZCO

Del tridngulo mostrado por la figura se obtiene la siguiente relacidn trigonométrica:

V4 —x?

X

cotd =

Finalmente,

f dx
x2V4 — x? 4 x

) fvél-—xzdx

x
Solucion:

Este problema es idéntico al ejercicio anterior y corresponde al caso 1 de sustitucion
trigonométrica. Se identifica v = x y a = 2. Por lo tanto,
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x =2sin0 = dx =2cos6db

Y,

2% —x2=2cos0

Sustituyendo y simplificando, queda:

V4 — x2dx 2cos 6 2cosfdb cos? 6 1 —sin%?6
f =f - =2f - d9=2f—( )dQ
2sin@ in@
1 sin? @ )
=2f — d9=2f(csc9—sm9)d9

sinf sin@

X sin @

=2fcsc9d9—2fsin9d9
= 2In(csc — cotf) + 2cosb + C

Del tridngulo (ver figura) obtenemos las siguientes relaciones trigonométricas:

2
csch =—

x

V4 —x?
cotf =
Finalmente,

+C

X 2

V4 — x2dx 2 V4—x2 4 — x2
szzm P +2-

2—V4—x?
:21n<7>+\/4—x2+C

3.[«9 — x2%dx

Solucion:

Este problema corresponde al caso 1 de sustitucion trigonométrica. En la figura se
muestra el tridngulo en la que se identifica v = x y a = 3. Por lo tanto,

x = 3sin0 = dx = 3cos6db

Y

v9 —x%2=3cos0

108



Sustituyendo y simplificando, queda:
f\/9—x2dx=f3c059-3c059d9=9fc0529d9 3

1
= 9_{5(1 + cos 20)do

—gfd9+9f 260d6o
—E E Cos

9

= 9+9 L 20+C
=30ty g

—99+9 in26 + C
—E ZSID

Se utiliza la identidad trigonométrica sin26 = 2sinfcosf y del tridngulo
mostrado por la figura obtenemos,

ing == -  f=sinl
sinf == =sin"'=
3 3
V9 —x2
cosf =
3
Finalmente,

9 9 9 9
f 9—x2dx=§9 +Z-251n9C059+C=§0+Esin9cost9+6

4._{(1 — x%)3/% dx

Solucion:

Este problema corresponde al caso 1 de sustitucion trigonométrica. En la figura se
muestra el tridngulo en la que se identificav = xya = 1. Por

lo tanto,

1
x =sin® = dx = cos8do N
Y,

-
|

=
©
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v1—x2%2=cos0

Sustituyendo y simplificando, queda:
3
f(l —x2)32dx = f (\/1 —xz) dx = f(c059)3 -cosfdf = f cos*0do

Para la integracién de cos* 8 se utiliza el factor (ii) del caso 3 de integral de potencia
par de coseno.

1 2 1
f(l —x?)32dx = f [E (1 + cos 29)] dx = Zf(l + 2 cos 28 + cos? 28)do

1

1 1
= — — 2
—4fd9+4f2c0529d9+—4fcos 20 do

—19+11'29+1f1 1+ cos48)do
=3 22sm 2 2( cos 46)

—19+1'29+1fd9+1f 460 do
—Z Zsm 5 g COS

—19+1 i 29+10+1 L 40+ C
—Z Zsm 5 §ZSII’1

3 1 . 1 .
= 59 +Zsm29 +§sm49 +C
Se utilizan las identidades trigonométricas de dangulos dobles sin46 =
2 sin 26 cos 28, asi como también, sin 20 = 2sin@ cosfycos20 =1 —2sin?2fy
del tridngulo mostrado por la figura se obtienen las siguientes relaciones
trigonométricas:

sinf = x = 8 =sin"1(x)
cosf =+1—x?
Finalmente,

220y = 29 + Lo 1o

(1 —x?)3“dx 89+4(251n9c059)+32(251n29c0529)+C
3 1
= gsm‘l(x) + E(x) (\/ 1- xz)

1
+ 1e [(2sin 6 cosB)(1 — 2sin? 6]

x\/1—x2+x\/1—x2
2 8

= gsin_l(x) + [1- Z(x)z] +C
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3 xWV1—x2 xvV1—2x%2 2x3V1—x2
f(l —x2)3/2dx = =sin" (x) + + - +C
8 2 8 8
3 5xv1 —x2  x3V1—x2
= gsm‘l(x) + 3 - 2 +C

xV1 — x2

= Esin‘l(x) +——(GB-2x)+C
8 8

V5 — x2
Solucion:

Este problema corresponde al caso 1 de sustitucion trigonométrica. En la figura se
muestra el triangulo rectangulo que representa el caso 1, en la que se identificav =

xya = /5. Por lo tanto,

=+/5sin0 > dx = /5cos6 db

Vs
y x
2 =
V5 —x V5 cos 6 e

Sustituyendo y simplificando, queda:

f f(\/gsme) \/§C059d9
V5 — x? V5 cos 0

En la integraciédn sin3 6 se emplea el caso 1 de integral de potencia impar de seno
(véase la solucién del ejercicio 1 de la seccidn 2.2), en consecuencia:

= 5\/§fsin39d9

x3dx
=5\/§fsin295in9dx=5\/3[(1—c0529)sin9d9
N e
= 5x/§fsin9d9—5x/§fc052951n9d9

= —5V5cos 6 — 5\/§f(cos 0)%sin 6 do

Se aplica el método del cambio de variable, donde:
u =cos@ = du = —sin6do

Por lo tanto,
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x3dx
=—5\/§c059—5\/§f cos 8)?sin 6 do
f\/S—xz ( )

= —5V5cos 6 — 5\/5[ u2(—du) = =5V5cos 6 + 5\/3[ u?du

1 5v5
=—5\/§c059+5\/§-§u3+6=Tcos39—5\/§c059+6

Del tridngulo mostrado por la figura se obtiene la siguiente relacién trigonométrica:

N
75

Finalmente,

cosf =

x3dx 55 /5 — x2 ’ V5 — x2
=== (") o5 (5 )+

V5 V5
Era)
GRS NN e
3
6[ dx
) xVAF X2
Solucidn:

Este problema corresponde al caso 2 de sustitucion trigonométrica. En la figura se
muestra el triangulo rectangulo que representa el caso 2, en la que se identificav =
xya = 2.Por lo tanto,

x =2tan0 = dx = 2sec?>6do
4+ x2

Y

V4 +x2=2sech >

Sustituyendo y simplificando, queda:

f dc« 2sec’0df 1
waA+x2 J (2tanB)(2sechd) 2

_lf 1 costH_lf 1 d9—1f 0.do
~2) cos@ sind ~ 2 sing 2 ese

1 1
fsec@ —de =—fsec9-cot9d9
tan 8 2

1
= Eln(csc@ —cotf)+C
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Del tridngulo mostrado por la figura se obtienen las siguientes relaciones
trigonométricas:

sin@ = X > cscO = ! 4t Xt
VA + 22 Tsinf | x
tanf = = g =—
= — = = = —
an 2 co anf x
Finalmente,
f _ Vvd+x2 2 +C= 1 \/4+x2 c
xVa+x2| X X x
7[ X g
.| ——dx
V6 + x?
Soluciodn:

Este problema corresponde al caso 2 de sustitucion trigonométrica. En la figura se
muestra el tridngulo que representa el caso 2, en la que se identificav =xya =

V6. Por lo tanto,

x =V6tan® > dx = \6sec? 6 do =
Y

\/m =V6sech N

Sustituyendo y simplificando, queda:

tan 0
f(‘/_ an6)" V6 se 29d9=6ftan295ec9d9

X
f\/6+x2 V6 seco

Aplicamos la identidad trigonométrica: tan? 8 = sec? 8 — 1, por lo que:

x2
—dx=6f sec’9 —1 sec9d9=6fsec39d9—6fsec9d9
f\/6+x2 ( )
=6fsec39d9—6ln(sec9+tan9)+C

El desarrollo de [ sec® 6 dO (véase el ejercicio 18 de la seccién 2.2) corresponde al
caso 8 para potencias impares de secante y usa la técnica de integracién por partes,
en la que se debe considerar que u = sec" 2 8 y dv = sec? 0 d#@, es decir:
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u = secf dv = sec?0do

du = sectan 6 do v=fsec29d9=tan9

Por lo tanto,

fsec39d9 = fsec@seCZGdQ = uv—fvdu
=secHtanf — f tan 6 (sec O tan 8 df)
=secHtand —ftanzesecede

= sec9tan9—f(sec29— 1)secO df

= secfH tan 6 —fsec30d9 +fsec9d9
Se puede observar la semejanza de la integral de sec® 8, en consecuencia:

f sec30do + f sec30df = secHtanf + In(secd + tan 9)

1 1
f sec30do = Esece tan 6 + Eln(sec@ + tan 9)
Reemplazamos este resultado en la integral:

x2
f—dx=6 sec30d0 — 6In(secd +tanf) + C
V6 + x2 f

1 1
=6 [E secftanf + Eln(sec 6 +tanf)| — 6In(secl + tan H)

+C
= 3secHtanf + 3In(secd + tanf) — 6In(secd + tan ) + C
=3secHtanf — 31In(secld + tan ) + C

Del tridngulo mostrado por la figura se obtiene la siguiente relacién trigonométrica:

cosf = 6 > secl = ! = 6+ x*
V6 + x? cos 6 G
X

tan@—%

114



Finalmente,

X2
=%

1
=-xy6+x%2—-31
X +x n(

1
=5% 6+x2—3ln(\/6+x2+x +C

dx
o ——
13 — 4x + x2
Soluciodn:

Primero debemos convertir la integral a una forma donde la sustitucion
trigonométrica se puede aplicar, por lo tanto, aplicamos el método de completar
cuadrados,

x2—4x+13=x?-22Q)x+22-22+13=(x—-2)2+9

Después la integral se resuelve aplicando el caso 2 de sustitucién trigonométrica.

f dx =f dx
V13 — 4x + x2 VI + (x —2)2

En la figura se muestra el tridangulo rectdngulo que representa el caso 2, en la que
se identificav = x — 2y a = 3. Por lo tanto,

x—2=3tan® = x=3tanf0+2 = dx = 3sec?6do

Y

79+ (x —2)2 =3sech Jo+(x—2)2

Sustituyendo y simplificando, queda:

f dx _f dx _szeczedH 3
VI3 —4x +x2 \/9+(x—2)2_ 3sech

= fsec@de = In(secf +tanf) + C

Del tridngulo mostrado por la figura se obtiene la siguiente relacién trigonométrica:

3 1 J9+(x-2)2

c0sf = ——— = sec = =

[9 + (x — 2)2 cos 6 3
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" 9_x—2
an—3

Finalmente,

3 3

dx VI9+(x—2)2 x-2
f—zln(sec9+tan9)+6=ln + +C
V13 — 4x + x?

=ln<,/9+(x—2)2+x—2>+c

3

=In(\O+(x—2)7+x-2)+C

e—x
9. — 4
f9e—2x+1 X

Solucion:

Este ejercicio corresponde al caso 2 de sustitucién trigonométrica. En la figura se
muestra el tridngulo que representa el caso 2, en la que se identifica v =3e™* y
a = 1. Por lo tanto,

1
3e™* =tan0 =5 —3e*dx=sec’0dfd = e ¥dx= —§sec2 6do

\Z

V9e 2* + 1 =sech > 9e™2* + 1 =sec?6 [y
\9e +1

3e™*

Sustituyendo y simplificando, queda:

e~ —%seczade 1
o el et T
1
=—30+C

De la relacién trigonométrica tan 6 ya expresada se despeja 0, definida por:
3e*=tan® = O =tan"1(3e™¥)

Finalmente,

e™* 1
fmdx = —§tan_1(36_") +C
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e—x
1O'f—(9e—2x e dx
Soluciodn:

Este ejercicio se desarrolla de manera similar al ejercicio 9 que corresponde al caso
2 de sustitucion trigonométrica. En la figura se muestra el tridngulo que representa
el caso 2, en la que se identifica v = 3e ™ y a = 1. Por lo tanto,

1
3e™* =tan0 =5 —3e*dx=sec’0dfd = e ¥dx= —§sec2 6do

\Z

Joe 2+ 1=sec6 = (9e2*+1)32=sec30

Sustituyendo y simplificando, queda: 3% VeI +1
e~¥ —%sec2 6 do 1 do

|Gt = | e ="3) s :

-1 0do = 1'0 c
——§fcos = —3sin +

De la relacién trigonométrica tan 6 ya expresada despejamos 6, definida por:

sin@ = L

Finalmente,

ILM:_E%_"CH:_LH
(9e=2% + 1)3/2 3v9e2 + 1 V9e=2* +1

11 f dy
Wyr=7
Solucion:

Este problema corresponde al caso 3 de sustitucion trigonométrica. En la figura se
muestra el triangulo rectangulo que representa el caso 3, en la que se identificav =

yya = /7. Porlo tanto,
y =+/7secH = dy =7 sec@tan6 do

Y
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Jy?—7=+/7tan®

Sustituyendo y simplificando, queda:

f f V7 sectan 8 d 1 20 hr=7
,/y - (V7 sec®)(V7 tan ) \/_
V7
=W9+C

Del tridngulo mostrado por la figura se obtiene la siguiente relacién trigonométrica:

2 7 [v2 — 7
tanf = o = 6 =tan?! \EARNES
V7 V7
Finalmente,
d 1 2-17
f—y=—tan—1 A
yy2 =7 V7 V7
12 In3w 4
.| —dw
wVlnZw — 4
Soluciodn:

Este problema corresponde al caso 3 de sustitucion trigonométrica. En la figura se
muestra el triangulo rectangulo que representa el caso 3, en la que se identificav =
Inwya = 2. Por lo tanto,

1
Inw = 2secB > de=25ec9tan9d9 Inw

VinZw — 4

Y,
In2w—4 =2tané@

Sustituyendo y simplificando, queda:

In” w Unw)® 1, f(z 5ec0)” ) cecd tan 6 d8
—F—aw = —_—aw = — 24 SeC an
wvlnZw — 4 VinZw —4 w 2tanf

=f85ec395ec6d9 =8fsec49

El desarrollo de [ sec* 6 dO (véase el ejercicio 12 de la seccién 2.2) corresponde al
factor (i) del caso 5 para integral de potencias pares de secante.
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f sec* x dx = f sec?xsec? xdx = f(tan2 x + 1)sec? xdx
= f tan? x sec? x dx + f sec? x dx

= f(tanx)2 sec2xdx +tanx + C

Se aplica el método del cambio de variable, donde:

U =tanx = du = sec® x dx

Por lo tanto,
1 1
fsec“xdx=fuzdu+tanx+6=§u3+tanx+C=§tan3x+tanx+C

Reemplazamos este resultado en la integral:

In® w d 8[ 49 8(1t 3x+t +C)
—_——aw = sec = —tfan~ x an x
wVinZw — 4 3

8
= §tan3x + 8tanx + 8C

8
= §tan3x + 8tanx + C;

Del tridngulo rectangulo mostrado por la figura se obtiene la siguiente relacion
trigonométrica:

VvinZw — 4
tan = ———
2
Finalmente,
In3w 4 8<vlnzw—4>3+8<vln2w—4>+c
—_dw == —— —
wVln2w — 4 3 2 2 !

1
:5(,/1n2w—4)3+4 In2w — 4+ C,
1 2
- 5\/1n2W — 4[(\/ln2W —4) + 12] +C,
1
= §\lln2w—4(ln2w—4+ 12) + ¢,
1
= §\llnzw—4(ln2w+8) +C,

119



8
13[
1 x%2—6x+8

Solucion:

Primero convertiremos la integral a una forma donde la sustitucion trigonométrica
se puede aplicar completando el cuadrado, es decir, que:

x2—6x+8=x2-23)x+32-32+8=(x-3)2-1

Después la integral se resuelve aplicando el caso 2 de sustitucién trigonométrica.

8 8
f 2 _ f — 3)2
;2 VX 6x + 8 . (x—3)2%-1

Este problema corresponde al caso 3 de sustitucion trigonométrica. En la figura se
muestra el tridngulo que representa el caso 3, en la que se identificav =x—3y
a = 1. Por lo tanto,

x —3 =secO =3 dx =secOtan0 db

Y, Jx—-3)2-1

Jx—3)2—-1=tanb ;6

Sustituyendo y simplificando, queda:

secHtan b do

8 8 8
V2 —6x+8 ./(x—3)2 1 tan 6
4 4 4

= fsec@ d6 = |In(secd + tan 8)|8
4

Las siguientes dos relaciones trigonométricas se obtienen del tridangulo rectangulo
gue se mostro en la figura.:

secd =x—3

tanf = /(x —3)? -1

Finalmente, se evalla la integral definida:

’ dx 5 8
fm=|ln(x—3+\/(x—3) —1)|4
4
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fd—xz[ln(8—3+\/m)]—[ln(4—3+\/m)]

VxZ—6x+8

=In(5+{E7—1)-In(1+ /@07 1)
=In(5 + v24) — In(1)
=1In(5 + 2V6)

In2 ¢
e

14'[ (e?t + 8et + 7)3/2 dt
0

Solucién:

Nuevamente en el denominador completamos cuadrados,

et +8et +7=e?+2(4)et +42—42+7 = (e?* +8et +16)—9
et +8et+7=(et+4)?2-9

Después la integral se resuelve aplicando el caso 2 de sustitucién trigonométrica.

In2 In2
t

f e dt —f ¢ dt
2t t 3/2 - 3
) (e?t +8et+7) ) [ /—(ef 42 = 9]

Este problema corresponde al caso 3 de sustitucion trigonométrica. En la figura se
muestra el triangulo rectangulo que representa el caso 3, en la que se identificav =
et +4ya = 3. Porlotanto,

et +4=3sechH = etdt =3secHtanf db

e’ +4
\/m = 3tan6
Sustituyendo y simplificando, queda: ’
" et 1I123sec6?tan19dt9 llnzsec9d9
Of (e?t + 8et + 7)3/2 dt = f (3tanB)3 - 6! tan2 0

Aplicamos las identidades trigonométricas:

secl = tanf =
Y cos

cos @
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In2 In2 In2

et dt—lf 0 1 _1[ 1 cos?6
(e2t +8et +7)3/2"" 9 sec (tan@)2 9) cosf sinZ6
0 0
In2
_ lf cos @ 40
~9) sin%6
0
Ahora se realiza un cambio de variable,

u =sin@ > du = cos@df

Sustituyendo el cambio de variable,

In2 . In2 In2
¢ dt=lfd—u=lf u‘2du=—1
(e?t + 8et + 7)3/2 9) u* 9 9
0 0

Del tridngulo mostrado por la figura se obtiene la siguiente relacién trigonométrica:

et +4

1 In2 1 1 In2

9[sin 8|,

u

0

sin 0 =

Finalmente, se evalua la integral definida:

In2 In2

et 1| et +4

dt = — = |—on
(e?t + 8et + 7)3/? 9N/t +4)2 -9 .

1
9

2+4

Ilyzroz- ] - L/(l :)4; - 9]}

{ eln? 4+ 4 ]_[ e’ +4 ]}
V(en? +4)2 — V(e +4)2-9

{[H [l -sti-5)

2 __% _o1088
36 273

2.4. Integracion por fracciones parciales.

El método de integracién por fracciones parciales consiste en descomponer y luego
. .. p . .. . P(x)

poder realizar la operacidn de sintesis de una fraccién racional f(x) = oG due
X

contiene términos complejos en el denominador Q(x). Por medio de fracciones
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parciales, es posible calcular y descomponer la expresién en términos mas sencillos
para poder facilmente integrar o calcular la expresion asi obtenida. Asi pues, el
principio basico de la integracién por fracciones parciales consiste en factorizar el
denominador y después descomponerlo en dos fracciones diferentes donde los
denominadores son los factores respectivamente y el numerador se calcula
convenientemente. Los pasos necesarios para descomponer una fraccion algebraica
en sus fracciones parciales resultan de la consideracién del proceso inverso: la suma
(o la resta). Considere la siguiente suma de fracciones algebraicas:

1 3 (x—3)+3(x-2) 4x -9
r—2 x—3 x-Dx-3)  G-2D@x-3)

El propdsito de esta seccidn es realizar lo inverso, es decir, que a partir de,
4x —9
(x—2)(x—-3)

tratar de encontrar las fracciones cuya suma da este resultado, luego las dos
fracciones obtenidas, es decir,

1 3
—2 Y ¥x=3

denominadas “fracciones parciales” de
4x —9
(x—2)(x—-3)
Las fracciones son descompuestas en fracciones parciales debido a que:

» hace que determinadas integrales resulten mucho mas faciles de resolver, y
» también se utiliza en la transformada de Laplace, que se estudiard en
ecuaciones diferenciales.

Entonces, por ejemplo, si necesitdramos integrar la denominada “fraccién parcial”,
se podria simplificar la integral de la siguiente manera:

4x—9 J f 1 p +f 3 p
— dx = —ax X
(x—2)(x—3) x—2 x—3
Para evaluar las dos integrales se recomienda revisar el ejercicio 7 de la seccién 1.3
del capitulo 1.

f(x _4:);6 3 dx=In(x—-2)+3In(x—-3)+C

=In(x—2)+In(x—3)3+C=In[(x —2)(x —3)3]+C
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El proceso:

1. Siel grado de P(x) es mayor o igual que el grado de Q(x), entonces tenemos que
utilizar la divisién larga para encontrar

PO) R
e R IE))

lo que resulta en que el grado del resto R(x) es menor que el grado de Q(x).

P(x) R(Xx)

2. Para descomponer —= 0 —— (en caso de haber hecho la divisién larga), primero

Qlx) Q)

factorizamos Q(x).

3. A continuacidn, se debe usar las distintas formas de integracién por fracciones
parciales y los distintos métodos.

>

>

>

Caso 1: Fracciones algebraicas con dos factores lineales: Por cada factor
lineal no repetido (x + a) y (x + b) en Q(x), se define la fraccion parcial
como:

A+B
xta xtb

Caso 2: Fracciones algebraicas con factor lineal repetido: Por cada factor
lineal repetido (x £ a)™ y (x £ b) en Q(x), se define la fraccién parcial
como:
A N B bt Y N VA
(xta) (xxa)? xta)® x=*b

Caso 3: Fracciones algebraicas con factor cuadratico: Por cada factor
cuadratico x2 + bx + ¢, se define la fraccién parcial como:
Ax + B
x2+bx+c

Caso 4: Fracciones algebraicas con factores cuadraticos repetidos: Por
cada factor cuadratico repetido (x2 + bx + ¢)", se define la fraccién
parcial como:

Ax + B + Cx+D o Yx+2Z
(x2+bx+c) (x?+bx+c)? (x% + bx + )"

Finalmente, se integran los términos resultantes. Los factores lineales dan
logaritmos. La sustitucidn o la sustitucion trigonométrica normalmente se
encargaran de los otros factores. A continuacidn, se presentan ejercicios resueltos
de los cuatro casos de la integracion por fracciones parciales.
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1
ek

Solucion:

Primero evaluamos la fraccidn parcial mediante tres métodos del caso de factores
lineales,

1 A B
- =
x(x—2) x x-—2
Método 1: combinando los términos de los miembros del lado derecho de la
ecuacion, se obtiene:

1 _A(x—2)+Bx
x(x—=2)  x(x-2)

Ya que los denominadores son iguales se simplifican, por lo tanto:
1=A(—2)+Bx

1=Ax—2A+ Bx

Ox+1=x(A+B)—-24

Igualamos los coeficientes de potencias iguales:

1=-24 = A=—-2
2

1
0=A+B = B=5

Método 2: nuevamente combinamos los términos de los miembros del lado
derecho de la ecuacion, se obtiene:

1 A(x —2)+ Bx
x(x—=2)  x(x-2)

Ya que los denominadores son iguales se simplifican, por lo tanto:
1=A(—-2)+Bx

Mediante asignacion de valores de x se obtienen Ay B, es decir,
Six =0: 1=A4(-2)+ B(0) = Az_%

Six=2: 1=A4(0)+ B(2) = B:%

Método 3: conocido como método de encubrimiento
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1 _A+ B
x(x—2) x x-—2

Para encontrar Ay B se aplica:

1 1 2 1
= = — = [ —
x—2l,0g 0-=2 2
B 1 1 B 1
= — = — = = —
xx:Z 2 2

Como se puede observar, el desarrollo de la fraccién parcial mediante los tres
métodos explicados da siempre el mismo resultado. En el resto de los ejercicios de
esta seccién se va a utilizar cualquier método y se recomienda al lector resolver los
ejercicios con cualesquiera de los métodos no empleados en la resolucion de los
ejercicios.

Por lo tanto, la descomposicion en fracciones parciales deseada es,

1 _—1/2+ 1/2
x(x—2) x x—2

En consecuencia,

f 1 d—f_l/zd +f1/2d— 1 dx+1f dx
x(x—2) x= x x x—2 = 2) x 2)x-2

= 11 +1l 2)+C
= Enx En(x )

Finalmente, aplicando propiedad de logaritmo natural: In (%) =Ilna—1Inb

f L v =I0n(—2)—Inx] + /=21 (x_2)+c
X =2) x—2 n(x —2)—Inx —Zn

5x—-1
Solucién:

Método 2: Primero factorizamos el denominador y combinamos los términos de los
miembros del lado derecho de la ecuacidn, se obtiene:

S5x—1 5x—1 . N B Alx+1)+B(x—-1)

x2—-1 (x-1Dx+1) x-1 x+1  (x—1(x+1)

Ya que los denominadores son iguales se simplifican, por lo tanto:
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S5x-1=Ax+1)+B(x—-1)

Mediante asignacion de valores de x se obtienen Ay B, es decir,
Six=1: 5(1) —1=A(2) + B(0) = A=2
Six=-1: 5(-1)-1=A4(0)+B(-2) = B =3

Por lo tanto, la descomposicion en fracciones parciales deseada es,

5x—1_ 2 4 3
x2—-1 x—1 x+1

En consecuencia,

fo—ld _f 2 d +f 3 d _Zf dx +3f dx
x2—1 x= x—1x x+1 = x—1 x+1

=2In(x—-1)+3In(x+1)+C
=In(x—1)2+In(x+1)3+C=In[(x — 1)?(x + 1)3]+ C

3[ x+2 d
") 2x%2 —x X

Solucion:

Método 2: Primero factorizamos el denominador y combinamos los términos de los
miembros del lado derecho de la ecuacidn, se obtiene:

x+2  x+2 _A+ B A(@2x—-1)+Bx
2x2—x x(2x—1) x 2x—-1  x(2x—-1)

Ya que los denominadores son iguales se simplifican, por lo tanto:
x+2=A02x—-1)+Bx
Mediante asignacion de valores de x se obtienen Ay B, es decir,
Six=0:0+2=AC-1)+B0O) = A=-2
Six=1:2+2=A(0)+B(l) = B=5

2 2 2
Por lo tanto, la descomposicion en fracciones parciales deseada es,

x+2 _—2 5
2x2—x  x  2x—1

En consecuencia,
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Zx x
dx dx

1
-2 7+5f2x_1——21nx+5-§ln(2x—1)+C

5
—21nx+§ln(2x— n+C

4[ -1
o+ 7x—a™

Solucion:

Método 2: Primero factorizamos el denominador y combinamos los términos de los
miembros del lado derecho de la ecuacidn, se obtiene:

4x—11 4x — 11 A N B A(x+4)+B(2x—-1)
2x2+7x—4 (x—-1(x+4) 2x—1 x+4  2x—-D(x+4)

Ya que los denominadores son iguales se simplifican, por lo tanto:
4x —11=A(x+4)+B(2x—-1)

Mediante asignacion de valores de x se obtienen Ay B, es decir,
Six=1 2—11:AG+4)+B(0) > A=-2

Six =—4: 4(-4) - 11 =A(0) + B(7) = B=5

Por lo tanto, la descomposicion en fracciones parciales deseada es,

x+2 -2 5

2x2 —x  x  2x—1

En consecuencia,

J‘x-l—z J‘ dx +
2x% —x X

=2 dx+5f D lnx+5-in2r—1)+C
= X ax—1_ 2lx+5-5n@x—1)

5
= —21nx+§ln(2x— n+C

| e
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Solucion:

Método 2: Este caso corresponde a factores lineales repetidos, después
combinamos los términos de los miembros del lado derecho de la ecuacién, se
obtiene:
1 A B C
= + +
(x+2)2x+1) x+2 ((x+2)? x+1

1 A +2)(x+ D+ Bx+ 1)+ C(x +2)°
(x+2)2(x+1) (x+2)2x+1)

Ya que los denominadores son iguales se simplifican, por lo tanto:
1=Ax+2)(x+ 1) +Bx+1)+C(x+2)2

Mediante asignacion de valores de x se obtienen A, By C, es decir,
Six =—2:1=A(0) + B(—1) + €(0)? = B=-1

Six =—1:1=A(0) + B(0) + C(1)? = c=1
Six=0:1=A2)D+ DM+ W22 = A=-1

Por lo tanto, la descomposicion en fracciones parciales deseada es,
1 -1 -1 1
= + +
(x+2)2°x+1) x+2 ((x+2)? x+1

En consecuencia,

[ermernt =t [t [rae
- fx+2 f(x+2)2 fx+1
=—1n(x+2)—g+ln(x+1)+C

1
—1n(x+2)+m+ln(x+1)+6

2x—1 d
x+r1p

Solucion:

129



Método 2: Este caso corresponde a factores lineales repetidos, después
combinamos los términos de los miembros del lado derecho de la ecuacién, se
obtiene:

2x—1 A B C

GFD? x+1 G+DZ GFD?

2x—1 Ax+1D?*+Bx+1+C
(x+1)3 (x+1)3

Ya que los denominadores son iguales se simplifican, por lo tanto:
2x—1=Ax+1)?*+B(x+1)+C

Mediante asignacion de valores de x se obtienen A, By C, es decir,
Six=-1:-3=4(0)2+B(0)+C = Cc=-3
Six=0:—1=A1)?+B() +(-3) = A+B=2 (1)
Six=1:1=A412)>+B(2) +(-3) = 2A+B=2 (2)

Restamos la ecuacidn (2) de (1):

24+ B =2
~A-B=-2
A /=0 = A=0

De(1:B=2-4 = B=2

Por lo tanto, la descomposicion en fracciones parciales deseada es,

2x—1 0 2 -3

GFD? x+1 G+DZ GFD?

En consecuencia,

2x—1 -3 dx dx
Gr f( 1) +f(x+1)3dx=2f(x+1)2_3f(x+1)3

_, (x+ 1)t 3 (x+1)‘2+C_ 2 N 3 L
- -1 -2  ox+1 2(x+1)2

1
———d
(x? + 6x + 5)? x

Solucion:
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Método 3: Este caso corresponde a factores lineales repetidos usando el método
del encubrimiento, primero factorizamos el denominaros y después combinamos
los términos de los miembros del lado derecho de la ecuacidn, se obtiene:

1 1 1

Z+6x+52 [x+DEx+52 (x+1D2(x+5)?
1 A B C D

GFD2(x+57 x+1 x+1? x+5 x+35)7

Aplicando el método del encubrimiento para los factores lineales de potencia
mayor:

5 1 1 gL
= = = = —
(x+52__, (—1+5) 16

) 1 1 b L
= = — = = —
e+ D2l (=5 +1)? 16

Para obtener Ay C del método de encubrimiento derivamos las expresiones de Ay
B:

A= d [ 1 ] 2 _ -2 A= 1
Cdxlxe+5)2A 1, x+5)3l_, (1453 __, 32
C= d [ 1 ] 2 _ -2 C= 1
Cdxle+ DA e+ 13 (-5+ D3 32
Por lo tanto, la descomposicion en fracciones parciales deseada es,
1 _—1/32 1/16 1/32 1/16
(x2+6x+5)2 x+1 (x+1)2 x+5 (x+5)2
En consecuencia,
! dx = f ! d
Z+6x+52 " " ) xrD2(x+52 %
1 1 1 1
=J‘—ﬁdx de J‘ﬁdx de
x+1 (x +1)? x+5 (x +5)?
1 x+Dt 1 (x+5)7t
=——1 1] ————+ =1 5| -———+¢C
3z ix 1 A i 6
1 x+5 1 1

= —1 — — I
32 rl|x+1 T6x+ 1D 16 +5)
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8 ! d
'f(xz—x—6)(x2—2x—8) x

Solucion:

Método 3: Este caso corresponde a factores lineales repetidos usando el método
del encubrimiento, primero factorizamos el denominaros y después combinamos
los términos de los miembros del lado derecho de la ecuacidn, se obtiene:

1 1
Z—x—6)x2—2x—8) (x-3)x+2)(x—4)(x+2)
1 ~ 1
(x2—x—-6)(x2—2x—8) (x—4)(x —3)(x + 2)2
1 A B C D

(xz—x—6)(xz—2x—8)=x—4+x—3+x+2+(x+2)2

Aplicando el método del encubrimiento para los factores lineales de potencia

mayor:

A=+ - o 4.1
(x=3)(x+2)*,_, (D@E6) 36

B = ; = ; = B = —i
(x—Hx+2)?,_, (125 25

p=+ | - 4 p,_1
x—Dx-3),__, (=6)(-5) 30

Se aplica la derivacion de D para obtener C del método de encubrimiento:

—2x+7 | 11

o4 1 _ B
T dx [(x —4)(x — 3)] wemy X —B2(x =32 __,  (=6)3(=5)?%I,__,

o 11
~ 900
Por lo tanto, la descomposicion en fracciones parciales deseada es,
1 _ 1/36 —-1/25 11/900 1/30
x—4)x-3)(x+2)? x—-4 x-3 x+2  (x+2)?

En consecuencia,

! dx = ! d
(X —x—6)(x? —2x —8) x_f(x—4)(x—3)(x+2)2 x
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1
f(xz—x—6)(x2—2x—8)dx

1 1 11 1
=J‘%dx+f—ﬁdx+fmdx %dx

x—4 x—3 x+2 (x +2)?
—11| 4| 1l| 3|+111|+2| +C
36 % 25 1% 900 ¥ 30(x + 2)

9-f%

Solucion:

Este caso corresponde a factores lineales repetidos y se emplean los métodos 2y 3
para que el lector compare y decida el mejor método en la solucién de problemas
de integracién por fracciones parciales. Primero se descompone la fraccidn
algebraica de la integral en fracciones parciales,

1 A B C D
— =t =t ——t—
v’(v—1?%2 v v? v—-1 (w-—1)>?
Método 2: combinando los términos de los miembros del lado derecho de la
ecuacion, se obtiene,

1 _Avw-1)*+Bw -1+ Cv*(v—1) + Dv?
v2(v—1)2 v2(v — 1)?

Ya que los denominadores son iguales se simplifican, por lo tanto:

1=Av(v—1)?+B(w —1)? + Cv?(v — 1) + Dv?

Mediante asignacion de valores de v se obtienen A, B, C y D, es decir,

Six=0:1=A(0) + B(—1)2 + €(0) + D(0) = B=1

Six =1:1=A(0) + B(0) + C(0) + D(1)? = D=1

Six=—-1:1=A(-1)(-2)? + B(—2)? + C(—1)?(-2) + D(—1)?

1=—4A+(1)4)-2C+(1)(1) = 24+C=2 (1)

Six=2:1=A2)(1)? +B(1)? + C(2)?(1) + D(2)?

1=2A+1)(1)+4C+ (14 => —-24-4C=4 (2)

Sumamos las ecuaciones (1) de (2):
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2A+C=2

—24—-4C =4

// —3C=6 = c=-2
De(1:A=1-05C=1-05(-2) = A=2

Método 3: Para obtener las constantes B y D se aplica el método del encubrimiento
para los factores lineales de potencia mayor, por lo tanto,

B=— -1 B=1
w-1%,, (1)?

p=—| =1 > D=1
v2v=1 12

Se aplica la derivacion de B y D para obtener las constantes A y C del método de
encubrimiento:

o4 1 -2 -2 A
T dx [(v — 1)2] =0 T (v-1)3 v0 T (-1)8 -
c dri1 -2 -2 c 2
= —|— = —_— = — =1 = -
dx [vz] pe1 V3 et 13

Al comparar los métodos 2 y 3 se puede observar que los valores de las constantes
son los mismos, entonces, el método 3 seria el mas adecuado. La descomposicidn
en fracciones parciales deseada es,

1 2 1 -2 1

—_—— =ttt
v’(v—1?%2 v v? v—-1 (v-—1)>?

Finalmente,

f dv _f2d+f1d dev_l_f dv
w-12 Jv v vz Y v—1 (v—1)2

—zfdvd +f “2q 2[ v +f dv
- v voav v—1 (v—1)2

v1 (w—1)71
:21n|v|+_—1—21n|v—1|+_—1+C

1 1
=211’1|U|—;—211’1|U—1|—m+6
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'f@—lXﬂ+9)S

Solucion:

Esta integral corresponde a la combinacidn de factores lineales y cuadraticos.

Primero se descompone la fraccion algebraica de la integral en fracciones parciales,
10 A 4 Bs+C

(s—1D(24+9) s—1 s2+9

Método 2: combinando los términos de los miembros del lado derecho de la
ecuacion, se obtiene,

10 AP+ D+(Bs+O)(s— 1)
(s—1D(s2+9) (s—1D(s2+9)

10=A(s>+9)+(Bs+C)(s—1)
Mediante asignacion de valores de s se obtienen A, B, y C, es decir,
Sis=1:10 = A(10) + (B + C)(0) = A=1
Sis=0:10=49)+(B-0+0)(-1)
10 = (1)(9) + C(-1) = c=-1
Sis=-1:10 = A[(-1)?> + 9] + [B(—1) + C](-2)
10 = (1)(10) + (-B—=1)(-2)
10=10+2B+2 = B=-1

La descomposicién en fracciones parciales deseada es,

10 1 (-Ds+ (-1
(s—1D(24+9) s-—1 s2+9
Finalmente,

10 1 —-s—1
f(s—l)(52+9)d5=fs—1ds+f52+9ds
ds sds ds
=f5—1_fﬁ+9_fﬂ+9
En la primera y segunda integrales se aplica cambio de variable, y en la tercera
integral se utiliza el Teorema 1.12 del capitulo 1. En consecuencia,

u=s-1 > du =ds
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1
v=s’+9 = dv = 2sds = sds=§dv

Finalmente,
f 10 ds = fdu 1fdv f ds
(s—1D(s%2+9) SElw T2 s2+9
1 S

1
= In|u| —Elnlvl —§tan‘1§ +C

1 1 s
=In|s — 1| —Elnls2 + 9| —gtan‘1§+ C

X
11. d
f xr D22+ D
Solucion:

Esta integral corresponde a la combinacidon de factores lineales repetidos y
cuadraticos. Primero se descompone la fracciéon algebraica de la integral en
fracciones parciales,

x A B Cx+D
GrD2@+D) x+1 G+1? +1

Método 2: combinando los términos de los miembros del lado derecho de la
ecuacion, se obtiene,

X A+ D+ 1D+ B+ 1)+ (Cx + D)(x + 1)?
(x+1D2(x2+1) (x+1)2(x%+1)

x=Ax+ 1?2+ 1) +B(x?+ 1)+ (Cx + D)(x + 1)?

Mediante asignacién de valores de x se obtiene de manera inmediata B, mientras
que 4, C y D, se resuelve utilizando la regla de Cramer,

Six=-1: —1=A(0)(2) + B(2) + [C(~1) + D](0)
-1=2B = B=-3
Six=0: 0=A4(1)(1)+B(1)+ (C-0+ D)(1)?
O=A—%(1)+D = 2442D=1 (1)

Six=1: 1=A4(2)(2)+B(2)+ (C-1+ D)(2)?
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1
1=4A--(D)+4C+4D = 24+20+20=1 (2)
Six=2:  2=A43)(5)+B(5)+ (C- 2+ D)(3)?
1
2=15A->(5)+18C+9D = 10A+12C+6D =3 (3)

A continuacidn, se representa el sistema de ecuaciones,

2A+0C+2D =1
2A+2C+2D =1
10A+12C +6D =3

Aplicando Cramer se obtiene la constante D y después se reemplaza en las
ecuaciones (1), (2) y (3).

2 0 1 |2 0_1_2 -0
2 2 1 2 22 K 20 2

p-110 12 3l _l10" 1273710 12| 12+0+24-20-24-0
20 2| |2-0_.2_2 0 24+0+48—40—48
2 2 2| |2 22 2 2
10 12 6l 11071276710 12

bl

2

De la ecuacion (1):
1
2A=1-2D = 2A=1—2(§) = A=0
De la ecuacion (2):
1
20=1—-2A-2D = ZC=1—2(O)—2(§) = (=0

La descomposicién en fracciones parciales deseada es,

x 0 N -1/2 +o-x+1/2_ 1 1 +1 1
(x+12(x2+1) x+1 (x+1)2 x2+1  2(x+1)? 2x2+1
Finalmente,

f x e lf 1 d+1f iy
G+ 22+ D T T 2) ar 2P T2 1™

En la primera integral se aplica un segundo cambio de variable y en la segunda se
utiliza el teorema 1.12.

v=x+1 > dv = dx
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Finalmente,

X _1lfdv 1 o1yt o1
f(x+1)2(x2+1)dx——§fﬁ+ztan x+C——E_—1+§tan x+C
_1 1 1 _ 1 1 1

—%‘than x+6—m+§tan x+C

dae

f sec? 0 (sec?0 +1)
tan®6 + 1

Solucion:

Este tipo de integral se resuelve aplicando primero un cambio de variable, y
posterior se descompone mediante fracciones parciales.

v =tan0 = dv = sec?0dé

Recordemos la identidad trigonométrica tan? 8 + 1 = sec? 8, y sustituyendo en la
integral, se obtiene:

fseCZQ(sec29+1) _f(tan29+1+1)sec29d9_f(v2+2)
tan36 + 1 - tan®6 + 1 ) v3+1

Factorizando el denominador, se descompone la fraccidn algebraica en una fraccion
parcial,

v:i+2 v2+2 A N Bx+C
v¥+1 Ww+DW2—-v+1) v+1 vZ-v+1

Se utiliza el método 2 de fracciones parciales, combinamos los términos de los
miembros del lado derecho de la ecuacidn, se obtiene,

v2+2 AW v+ D+ Bx+ O+ 1)
w+D@w2-v+1) w+DWr-v+1)

v24+2=A0?*-v+1)+Bx+O)(v+1)

Mediante asignacién de valores de v se obtiene de manera inmediata A, mientras
que By C, se resuelve mediante sustitucion,

Siv=—1: (—1)2+42=A[(-1)? — (=1) + 1] + [B(=1) + €](0)
3=34 = A=1

De la expresion v2 + 2 = A(w2 —v+ 1)+ (Bx + C)(v + 1), se sustituye A = 1y
se obtiene,
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v2+2=v2-v+1+Bx+CO)(w+1)
v+1=@Bx+CO)(v+1) = Bx+C=1

Entonces la integral queda,

fseczg(sec29+1)d9_f A 4 +f Bx+C
tan36 + 1 S Jv+1 v vZ—v+1 v

—f1d+f L
_v+1v vz—v+1v

En la primera integral se aplica un segundo cambio de variable y en la segunda se
completa cuadrado para utilizar el teorema 1.12.

u=v+1 = du =dv
2 +1—(2 +1)+1 1—( 1)2+3
v v =(v v 7 i v > 2
En consecuencia,
sec? 6 (sec?0 +1) du dv
f o
tan36 + 1 u 1 3
(v-32) +3
1
Inu + 1t oY +C
=Inu+—tan
V3 V3
2 2
2v—1
=1n|v+1|+itan‘1 2 +C
V3 V3
2

2 2v—1
=In|v + 1] +—tan‘1( )+ c

V3 V3

Finalmente, se sustituye el primer cambio de variable

fseczé?(sec249+1)d9_1 ltan + 1] + 2 . _1(2tan9—1)+c
tan36 + 1 = hitan \/gan V3

13 x> —29x+5 g
Ja-2ez+ 3

Solucion:
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Similar al ejercicio 11, se trata una combinacién de factores lineales repetidos y
cuadraticos. Se descompone la fraccidon algebraica de la integral en fracciones
parciales,

x*—29x+5 A N B +Cx+D
(x—4)2(x2+3) x—4 (x—4)? x2+3

Método 2: combinando los términos de los miembros del lado derecho de la
ecuacion, se obtiene,

x?=29x+5  A(x—4)(x*+3)+B(x*+3)+ (Cx + D)(x — 4)*
(x —4)2(x2+3) (x—4)2(x*>+3)

x2=29x+5=A(x —4)(x?+3)+B(x? +3) + (Cx + D)(x — 4)?

Mediante asignacion de valores de x se obtiene B, mientras que 4, C y D, se
resuelve utilizando la regla de Cramer,

Six =4: 42 —29(4) +5 = A(0)(19) + B(19) + [C(4) + D](0)?
—95=198 = B=-5
Six=0: 5=A(-4)(3) + (=5)(3) + (C- 0 + D)(—4)?
5=—124 — 15 + 16D > —6A+8D=10 (1)
Six=1: 12—=29(1) +5 = A(=3)(4) + (=5)(4) + [C(1) + D](—3)?
—23=-124—-20+9C+9D = —4A+3C+3D=-1 (2)
Six=—1: (=1)2 —29(=1) + 5 = A(=5)(4) + (=5)(4) + [C(~1) + D](=5)?
35=—-20A-20-25C+25D =  —4A—-5C+5D=11 (3)

A continuacidn, se presenta el sistema de ecuaciones,

—6A+0C+8D =10
—4A+3C+3D=-1
—4A—-5C+5D =11

Aplicando Cramer se obtiene la constante D y después se reemplaza en las
ecuaciones (1), (2) y (3).

-6 0 10| |[-6. 0-_.10-.—6 -0
-4 3 -1 [-4 37 =1 -4 3

p=l=4 =5 11l_l-4"-5"11" -4 -5
-6 0 8 —6_0_8_-6_0
—4 3 3 —4 3030 4 3
-4 -5 5 —47-5 5724 -5
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_ —198+0+200+120+30+0 152
T _90+0+160+96—90+0 76

D=2

De la ecuacion (1):

6A =8D — 10 = 64 =8(2) —10 = A=1

De la ecuacion (2):

3C=4A-3D -1 = 3C=4(1)-32)-1 = (C=-1
La descomposicién en fracciones parciales deseada es,

x2—=29x+5 A B Cx+D 1 -5 —x+2
= + + = + +
(x—4)2?(x*+3) x—4 (x—4)? x*2+3 x—-4 (x—4)?% x?>+3

En consecuencia,
f - d—f1d+f - d+f2_xd
G+ 022+ D T ) x—a T ma2 ™ T ) 2 3™
_f dx 5[ dx +2f dx f X d
T x—-4 (x —4)? x*>+3 x*>+3 x

En la primera, segunda y ultima integral se aplica un cambio de variable, en la
tercera integral se utiliza el teorema 1.12, en consecuencia,

v=x—4 > dv =dx

1
u=x%2+3 = du = 2xdx = xdx=§du
Por lo tanto,

f x d_fdv 5fdv+2 1t_1x 1fdu
G+ 22+ DT ) v R B2 W

vt 2 x 1
=Inly| -5-—+—=tan™! (—) — Elnlul +C

IV W

5 2 x 1
=In|x — 4|+ ——+—=tan! (—) —Elnlx2 +3|+C

=2 3\

x3 +10x% 4+ 3x + 36
4[ dx

(x — D% +4)2
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Solucion:

Este ejercicio trata de una fraccidon algebraica que contiene un factor lineal y
factores cuadraticos repetidos. Se descompone la fraccién algebraica de la integral
en fracciones parciales,

x3+10x2+3x+36_ A +Bx+C+ Dx+E
(x—Dx2+4)?2  x—1 x2+4 (x2+4)?

Método 2: combinando los términos de los miembros del lado derecho de la

ecuacion, se obtiene,

x*+10x+3x+36 AX*+4)?+(Bx+O)(x—Dx*+4) + Dx + E)(x - 1)
(x—1)(x2 +4)2 - (x—1)(x2+4)2

x3+10x2+3x+36 =A% +4)2+Bx+CO)x—1D)x?+4)+ Dx+E)(x—1)

Mediante asignacion de valores de x se obtiene A, mientras que B, C, D y E, se
resuelve utilizando la regla de Cramer,

Six=1: 13+ 10(1)?+3(1) +36 = A(5)? + (B + €)(0)(5) + [D + E](0)?
50 = 254 =
Six=0: 36=(2)(4)2+ (B-0+C)(-1)(@) + (D-0+E)(-1)
36=32—-4C—E > —4C-E=4 ¢h)
Six =—1: 42 = (2)(5) + [B(-1) + C](=2)(5) + [D(~1) + E](-2)
—-8=10B—10C+2D—-2E = 5B-5C+D—-E=-4 (2)
Six=2: 90=(2)(8)?+[B-2+C](1)(B) +[D-2+E](1)
16B +8C + 2D +E = —38 3)
Six=-2: 62=(2)(8)2 +[B(-2) + C](=3)(8) + [D(=2) + E](-3)
—66 =48B —24C+6D—-3E = 16B—8C+2D—E=-22 (4)

A continuacidn, se presenta el sistema de ecuaciones,

0B—-4C+0D—-E =4

5B—-5C+D—-E=-4
16B+8C+ 2D +E =-38
16B—8C+ 2D —E = -22

Aplicando Cramer se obtienen las constantes E y B, para después reemplazarlas en
las ecuaciones (1), y (2) y obtener las constantes C y D.
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0 -4 0 4

5 -5 1 -4 5 1 —4 5 -5 1
16 8 2 -38 —(-4)|16 2 -38/—4|16 8 2
pol16 =8 2 -—22|_ 16 2 —22 16 -8 2
0 —4 0 -1 5 1 -1 5 —5 1
5 -5 1 -1 —-(-4|16 2 -(-1f16 8 2
16 8 2 1 16 2 -1 16 -8 2
16 -8 2 -1
5 t._.—4._.5 1 5. -5.1..5 =5
—(4)162—38162 16821,68
E 16 222 16 2 16 -8 216 -8
5 1.-1..5 1 5. -5.1.5 -5
~(-0 |16 27 1 16 2—(1)16 82 16\8
16 27 =116 2 “_g72"16 -8
4[—220 — 608 — 128 — (—128 — 380 — 352)] —
£ 4[80 — 160 — 128 — (128 — 80 — 160)]
4[-10+16 —32—(—-32+ 10— 16)] +
[80 — 160 — 128 — (128 — 80 — 160)]
_ 4[-956 +860] —4[—208 + 112] —384+384 0
4[-26 +38] + [-208 + 112] =~ 48-96  —48
E=0
4 -4 0 -1
-4 -5 1 -1
-38 8 2 1
-22 -8 2 -1
B =
—48
-5 1 -1 -4 1 -1 -4 -5 1
48 2 1|-(®|-38 2 1|-(-D|- 8 2
p=_1=8 2 -1 -22 2 -1 —22 -8 2
—48
4.1 ~1 -4 5.1
—38_ 2 .1 —-38 -8 .2
+4|-22 2" S+ |22 »‘8 22
A | R R o
B= 38" 2 1 —38°8 2
—48
4[10 —16 —8 — (—8 — 10 + 16)] + 4[8 + 76 — 22 — (38 — 8 + 44)]
B = +[—64 + 304 + 220 — (380 + 64 — 176)]

—48
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4[—14 + 2] + 4[62 — 74] + [460 — 268] —48—48+192 96

—48 —48 —48

B=-2
De la ecuacién (1): —4C — E =4 > C=-1
De la ecuacién (2): 5(=2) = 5(-1)+D—-0=—4 = |D=1

La descomposicién en fracciones parciales deseada es,

x3 +10x% + 3x + 36 _f A +fo+Cd N Dx+E p
G-Dx2+4)?2 T ) x 1T ey vz

_ 2 (-2)x+(-1) (Dx+ (0)
= fx_ 1dx+dex+dex

dx 2x+1 X
=2fx—1_fx2+4dx+f(x2+4)2dx

dx 2xdx dx xdx
=fo—l_fxz+4+fx2+4+f(x2+4)2

Aplicamos cambio de variable a la primera, segunda y Ultima integral, mientras que
la tercera integral se utiliza el teorema 1.12. En consecuencia,

v=x—-—1 = dv =dx
1
u=x2+4 = du = 2xdx = xdx=§du

Finalmente,

x3 +10x% + 3x + 36 dv du dx 1 (du
ae=2 [T [T+ | &

(x — 1) (x? + 4)? x2+4+§ u?
ol | 1 1u? c
= 1’1|‘U| — n|u| +§tan (E) +§:+
1 X 1
_ 11— 2 Zian-1() _
=2In|lx — 1| —In|x +4-|+2tan (2) 2(x2+4)+C

1
15. | ——d
fx3 +1 x
Solucion:

Primero factorizamos la expresidon del denominador y después descomponemos la
fraccion algebraica de la integral en fracciones parciales, por lo tanto,
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1 1
—  dx = d
fx3+1 x f(x+1)(x2—x+1) X
Ahora expandimos la fraccién parcial,

1 _ A 4 Bx+C
(x+Dx2—x+1) x+1 x2—x+1

Podemos determinar las constantes A, B y C con cualquiera de los métodos
estudiados en esta seccion. Por ejemplo, utilizamos el método 3 (encubrimiento)
para calcular 4,

1 1 1
= A==

A=— " =
x> —x+ 1y 14+14+1 3

Para obtener B y C reemplazamos A y operamos la fraccién parcial,

1 _ 13 Bx+C
(x+Dx2—x+1) x+1 x2—-x+1

1 1 _ Bx+C
(x+1D@E2—x+1) 3(x+1) x2—-x+1

3-x*+x—-1  Bx+C
3+ D(x2—x+1) x2—x+1

—(x2—x-2)
3(x+1)
—(x+1x-2)
W—BX‘FC

=Bx+C

—(x-2)
3

L, B=—1 A =2
—_—— p— = = —_—— = —
3* T3 T 3 3

=Bx+C

La descomposicién en fracciones parciales deseada es,

1 1 2
L 3 . 3**3

(x+1)(x2—x+1)=x+1 x2—x+1

Finalmente,

fld_lfld 1f x d+zf y
Br17 T3 ) 1Y 3 13 1
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En la primera integral se aplica cambio de variable, la segunda integral se emplea
artificio matemadtico, completar cuadrado y cambio de variable, y la tercera integral
completamos cuadrados y empleamos el teorema 1.12.

v=x+1 =3 dv = dx

u=x2-x+1 = du = (2x — Ddx

1 1rdv 1 1(2x—1+1 2 1
fmdx=§f7‘§‘5f—xz_x+1d"+§f—xz_x+1d"

1 1 2x —1 1 1
=§1n|v|_gfxz—x+1dx+§fx2—x+1dx

1 1(du 1 dx
==Inlx+1|—- —+—f
3 (x2

6) u 2

—11| +1| 1l | |+1f
—§nx gnu E

1
11| + 1] 1l(2 +1)+11t (12 +C
= =In|x —=In(x*—x ——tan
3 6 23 V3
2 2
2x—1
1 1 143 >
==In|lx+1]—=In(x? —x+1) + =—tan™?! +C
3 6 V3V3 V3

“l %

2
1 1 2x—1
=§1n|x+1|—gln(xz—x+1)+—tan‘1( )+C

z 3
15 f3 2c0s° x
“Jr sin3 x — 5sinx
6

Solucion:

Tenemos una integral con expresiones trigonométricas para lo cual debemos aplicar
un artificio matematico con la expresién sin x, después factorizamos y usamos la
|.T.sin?x =1 — cos?x,
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el

T 3 T 3 . b3 3 .
3 2cos° x 3 2c0s° x sinx 3 2cos°xsinx
d . d
v

I sin3x — 5sinx m sin3x — 5sinx sinx 7 sin*x — 5sin? x
6 6 6

s 3
f3 2 cos® xsinx
n sin? x (sin? x — 5)
6

3 2 cos® x sinx
= dx
u (1 —cos?x)(—cos?x —4)

Evaluamos la integral mediante cambio de variable, por lo tanto,

v = cosxdx = dv = —sinx dx = sinxdx = —dv
T Vs Vs
fi 2 cos3 x (3 2v3(—dv) (3 2v3dv
u sindx —5sinx u 1-v)(-v2—4) u (1-v>)(w?2+4)

Nuevamente empleamos cambio de variable,
u=1-v? > v:=1-u = 2vdv=-du

fi 2 cos3 x f - 2vdv _ f% (1 —w)(—du)
3 sm3x—551nx (1—v2)(v2+4)_ n u(l—u+4)

3 jd

Vs Vs Vs
_ f? 1—u J _f? du f? udu
- %u(S—u) w= %u(u—S) %u(u—S)

L T
f3 du f3 du
) u(u-—>5 T u—5

6 ( ) 6
En la primera integral aplicamos fracciones parciales y en la segunda empleamos
cambio de variable. Descomponemos la primera integral en fracciones parciales,

1 A B

- =
u(u—5 u u-5

El

Obtenemos las constantes A y B aplicando el método del encubrimiento,

1 1 2 1

= = — = [ —

u—"5l.y -5 5
B 1 1 B 1
= — = — = = —
Uly—s 5 5

Realizamos el cambio de variable indicado anteriormente,
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t=u-75 > dt =du

Sustituimos los resultados de la fraccién parcial y del cambio de variable,

Vs Vs Vs Vs
3 2cos3x 3A 3 B 3dt
,3—_dx= —du+ du— —_—

%sm x —5sinx T U %u—S % t

T Vs
1 du 1 (3dt 3dt
= —— — 4 - _— —_—
T u 5Jt t Tt

6 6

) n m m T
3du 1 (3dt 3dt 1 (3du 4 (3dt

5Jt u 5J)r ¢t Tt 5J)r u SET
6 6 6 6 6

e

|——ln|u| ——1n|t| +,

Reemplazamos las variables u, t y v de los cambios de variables aplicados
previamente, por lo tanto,

f% 2 cos3 x D = 1l I 2| 4l | 5|%
%sin3x—551nx x—| 5rl v Snu |

e

— 1 2 4 2
= —glnll—cos x|—§1n|—4—v lE

6

e

— 1 2 4 2
= —glnll—cos x|—§1n|—4—1+(1—c05 x)l%

wld

— | Linjsin? x| = £1n|5 + sin? ]
= gnslnx gn Slnxl

= —%ln (sing)2 —gln (sing)z— ”
- —lln (sing)2 —gln (sing)2 —5”

- [-4n)-tn(e-3)- [t (-3)

f? cos3 x D = 11 (3) 4l (17)4_11 (1)+41 (19)
%sin3x—551nx = 5n4- 5n4- 5n4- 5n4-

Aplicamos la propiedad del cociente de logaritmo natural,
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1 4 1 4

—=[In3-In4] —=[In17 —In4] +=[In1 —In4] + = [In19 — In 4]

5 5 5 5

1l 3+11 4 4l 17 +41 4 +11 1 1l 4 +41 19 4l 4
gn gn() gn( ) gn() gn() gn() gn( ) gn()

4l 19 11 3 41 17
gn( )—gn()—gn( )

Finalmente,

Vs

F OSX 1= Hin19) - 2ine3) - Finry
%sin3x—55inx x—5n( ) 5n() 5n( )

2.5. Integracion numérica: Reglas de Trapecio y de Simpson.

Una técnica especifica para calcular el valor exacto de una integral definida se basa
en el Teorema Fundamental del Calculo. Estd técnica se fundamenta en el célculo
de antiderivadas denominado Calculo Integral. Sin embargo, en algunas ocasiones
habra que aproximar el valor de la integral definida en lugar de hallar su valor
exacto. En este caso, lo primero serd no poder calcular una antiderivada del
integrando. El segundo caso es cuando realmente no se conoce el integrando, sino
Unicamente los valores cuando se evalia en determinados puntos.

En esta seccidn se utilizan dos reglas para evaluar integrales en la que no es posible
evaluar el integrando, las dos reglas que se utilizan son: Trapecio y Simpson,

Regla del trapecio

b
A
= [ FGdx =517 ) + 27 ) + 27 () + 4 2 (i) + )]

Donde,

Regla de Simpson

b
A
Su = [ FGOdx = S 1FGro) + A£G + 2 ) + 4 4 (o) + £
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Donde,

En los siguientes ejercicios utilizamos la regla del Trapecio para evaluar integrales
definidas sin aplicar los teoremas abordados en capitulo 1 ni de alguna técnica de
integracion ya estudiada.

3
l.f(x3+1)dx;n=4-
1

Solucion:

Calculamos la longitud de cada subintervalo n de la integral definida en el intervalo
cerrado [1, 3] para n = 4 subintervalos, en consecuencia,

=22 371 s
n 4
Cada subintervalo es 0.5, en la siguiente tabla se realizan los calculos paran = 4,
n X; flx)=x3+1
0 1 f=13+1=2
1 1.5 f(1.5) = (1.5)% +1=4.375
2 2 f@Q=022+1=9
3 25 | f(2.5) = (25)%3+1 = 16.625
4 3 f3)=(3)3+1=28

Por lo tanto, utilizamos la regla del Trapecio:

f(x3 + Ddx = % [2 + 2(4.375) + 2(9) + 2(16.625) + 28] = 0.25(90)

3
f(x3 + 1)dx =225
1
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Solucion:

Calculamos la longitud de cada subintervalo n de la integral definida en el intervalo
cerrado [1, 6] para n = 5 subintervalos, en consecuencia,

A b—a 6-1 1
X = ==
n 5
Cada subintervalo es 1, en la siguiente tabla se realizan los calculos paran = 5,
1
n Xi f(x) = X
1
0 1 f===1
1
1
1 2 f@=5=05
1
2 3 f(3)=5=0333
1
3 4 f#)=7=025
1
4 5 f&=z=02
1
5 6 f(6) =¢ =0.167

Por lo tanto, utilizamos la regla del Trapecio:
3

J

1

[1+ 2(0.5) + 2(0.333) + 2(0.25) + 2(0.2) + 0.167] = 0.5(3.733)

N =

dx =

R

3
1

f—dx = 1.867
X

1

2
3.fx 4 —x%dx;n=28
0

Solucion:
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Calculamos la longitud de cada subintervalo n de la integral definida en el intervalo
cerrado [0, 2] para n = 8 subintervalos, en consecuencia,

b—a_2—0_025
n 8

La longitud de cada subintervalo es 1, en la siguiente tabla se realizan los célculos
paran =5,

n x; Fx) = xy/4—x2

0 0 |[f(0)=0

1 0.25 | £(0.25) = 0.25/4 — (0.25)% = 0.992
2 05 | £(0.5) = 0.5,/4 — (0.5)% = 0.968

3 0.75 | £(0.75) = 0.75\/4 — (0.75)% = 1.391
4 1| f() =14 - (1)% = 1.732

5 125 | f(1.25) = 1.25,/4 — (1.25)% = 1.952
6 15 | f(1.5) = 1.5\/4 — (1.5)2 = 1.984

7 175 | f£(1.75) = 1.75\/4 — (1.75)? = 1.694
8 2 | f@)=2/4-(2*=0

Ax =

Por lo tanto, utilizamos la regla del Trapecio:
2

0.25
fx 4 - x2dx = ——[0 +2(0.992) + 2(0.968) + 2(1.391) + 2(1.732)
0

+2(1.952) + 2(1.984) + 2(1.694) + 0] = 0.125(3.733)

2
fx 4 — x2%dx = 2.678

0

4
4.[ /1+\/§dx;n=8
0

Solucion:
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Calculamos la longitud de cada subintervalo n de la integral definida en el intervalo
cerrado [0, 4] para n = 8 subintervalos, en consecuencia,

b—a_4—0_05
n 8

Cada subintervalo es 0.5, en la siguiente tabla se realizan los calculos paran = 8,

P I Y OOy
0 0 |f(= \/T\/B =1

1 0.5 | £(0.5) = \/T\/E =1.307
2 1| f) = \/T\/I = 1414

3 15 | f(15) = \/T\/ﬁ = 1.492
4 2 )= \/T\/E = 1.554

5 25 | F(255) = \/T‘/ﬁ =1.607
6 3| f@3) = \/T\E = 1.653

7 35 | £(35) = \/T\/ﬁ = 1.694
8 4 | Fa) = \/T\/Z = 1.732

Por lo tanto, utilizamos la regla del Trapecio:

Ax =

: 0.5
f /1 +Vxdx = —=[1+2(1.307) + 2(1.414) + 2(1.492) + 2(1.554)

+2(1.607) + 2(1.653) + 2(1.694) + 1.732] = 0.25(3.733)

4
f /1 + Vxdx = 6.043
0

4
S.I\/Esinxdx;n=8
0

Solucion:
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Calculamos la longitud de cada subintervalo n de la integral definida en el intervalo
cerrado [0, 4] para n = 8 subintervalos, en consecuencia,

Ax:b_azuzo.S
n 8

Cada subintervalo es 0.5, en la siguiente tabla se realizan los calculos paran = 8,
n X; f(x;) =+/xsinx
0 0 | £(0) =+0sin(0) =0
1 0.5 | £(0.5) = V0.55in(0.5) = 0.339
2 1 | f(1) =V1sin(1) = 0.841
3 15 | f(1.5) = V1.5sin(1.5) = 1.222
4 2 f(2) =V/2sin(2) = 1.286
5 25 | f(2.5) = V2.5sin(2.5) = 0.946
6 3 | f(3) =V3sin(3) = 0.244
7 35 | f(3.5) = V3.5sin(3.5) = —0.656
8 4 | f(4) =+4sin(4) = —1.514

Por lo tanto, utilizamos la regla del Trapecio:
4
f\/}sinx dx = 075 [0+ 2(0.339) + 2(0.841) + 2(1.222) + 2(1.286)
0
+ 2(0.946) + 2(0.244) + 2(—0.656) — 1.514] = 0.25(6.930)

4
fﬁsinxdx =1.733
0

6

6.fln(x3+2)dx;n= 10

4
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Solucion:

Calculamos la longitud de cada subintervalo n de la integral definida en el intervalo
cerrado [0, 4] para n = 8 subintervalos, en consecuencia,

=220 074,
n 10

Cada subintervalo es 0.2, en la siguiente tabla se realizan los calculos paran = 10,
n X F() = In(x® +2)
0 4 | f(4) =In[(4)* +2] = 4.19
1 42 | f(4.2) = In[(4.2)° + 2] = 4.332
2 44 | f(44) = In[(4.4)® + 2] = 4.468
3 46 | f(4.6) = In[(4.6)% +2] = 4.6
4 48 | f(4.8) = In[(4.8)% + 2] = 4.724
5 5 | £(5) = In[(5)% + 2] = 4.844
6 52 | £(5.2) = In[(5.2)° + 2] = 4.96
7 54 | £(5.4) = In[(5.4)° + 2] = 5.072
8 56 | f(5.6) = In[(5.6)° + 2] = 5.18
9 58 | £(5.8) = In[(5.8)° + 2] = 5.284
10 6 | £(6) = In[(6)® + 2] = 5.384

Por lo tanto, utilizamos la regla del Trapecio:
6

0.2
fln(x3 +2) dx = —-[419 +2(4:332) + 2(4.468) + 2(4:6) + 2(4.724)
4

+ 2(4.844) + 2(4.96) + 2(5.072) + 2(5.18) + 2(5.284)
+5.384]

155



6

fln(x3 +2)dx = 9.65

Solucién:

Calculamos la longitud de cada subintervalo n de la integral definida en el intervalo
cerrado [0, 4] para n = 5 subintervalos, en consecuencia,

b—a 1-0

Ax = =—2=0.2
n 5
Cada subintervalo es 0.2, en la siguiente tabla se realizan los calculos paran = 5,
F) = —
n X; X)) = —
! ! Vx2 +1
1
0 0 f0) =——==
J(0)2Z2+1
£(0.2) 1 981
1 0.2 L) EmE T ——=
J02)2+1
1
2 04 | f(04)= =0.928

Por lo tanto, utilizamos la regla del Trapecio:

1
dx 0.2
=—1_1+42(0.981) + 2(0.928) + 2(0.857) + 2(0.781) + 0.707
JTHZ[()()()()]
1
dx
f = 0.880
J x2+1
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7

8 f dx 8
) =———n=
x>+x+1

1
Solucién:
Calculamos la longitud de cada subintervalo n de la integral definida en el intervalo
cerrado [0, 3] para n = 6 subintervalos, en consecuencia,
b—a 7-1

=——=0.75

n 8

Cada subintervalo es 0.75, en la siguiente tabla se realizan los célculos paran = 8,

Ax =

1
" i 10 =i
0 1 1= ! =0.333
f TWZ+1+1
1
1
1
1
4 4 =——— =0
f® (4)?+4+1 0.048
1
5 475 | f(4.75) = ———————=0.035

(4.75)2 + 475 + 1

1

1

8 7 £(7) =0.018

T2+ 7+1

Por lo tanto, utilizamos la regla del Trapecio:
7
dx 0.75
f [0.333 +2(0.172) + 2(0.103) + 2(0.068) + 2(0.048)

x2+x+1: 2
1

+2(0.035) + 2(0.027) + 2(0.022) + 0.018]

7

dx
f— =0.488

x2+x+1
1
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En los siguientes ejercicios se utiliza la regla de Simpson para evaluar las integrales
definidas:

2
9.f\/x4+1dx;n=6
0

Solucion:

Calculamos la longitud de cada subintervalo n de la integral definida en el intervalo
cerrado [0, 2] para n = 6 subintervalos, en consecuencia,

b— a 2 -0
Ax = ——=10.333
n 6
Cada subintervalo es 0.5, en la siguiente tabla se realizan los calculos paran = 6,
n X flx) =yx*+1

0 0 | fO=YO*+1=1

1 0333 | £(0.333) =4/(0.333)* + 1 = 1.006
2 0.667 | £(0.667) = /(0.667)* + 1 = 1.094
3 1 f=JDO*+1=1414

4 1333 | £(1.333) =4/(1.333)% + 1 = 2.04
5 1.667 | £(1.667) =/(0)* + 1 = 2952

6 2 | f@=J@*+1=4123

Por lo tanto, utilizamos la regla de Simpson:
f Vxt +1dx = 1 +4(1.006) + 2(1.094) + 4(1.414) + 2(2.04)

+4(2.952) + 4.123] = 0.25(90)

2
f\/x“ + 1dx = 3.653
0

/2

10.[ Vvsinxdx;n=6
0
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Solucion:

Calculamos la longitud de cada subintervalo n de la integral definida en el intervalo
cerrado [0, /2] paran = 6 subintervalos, en consecuencia,

b—a n/2-0 m
= = —=1§5°

Ax = e
=0 6 12

Se sabe queg = 90° y cada subintervalo es 15°, en la siguiente tabla se realizan los

calculos paran = 6,

n X f(x;) = Vsinx

0 0 | f(0)=+/sin(0) =0

1 15° | £(15°) = Vsin 15° = 0.509
2 30° | £(30°) =+/sin30° = 0.707
3 45° | f(45°) = Vsin45° = 0.841
4 60° | £(60°) = +/sin60° = 0.931
5 75° | f(75°) = Vsin75° = 0.983
6 90° | £(90°) =+/sin90° = 1

Por lo tanto, utilizamos la regla de Simpson:
/2

/12
f Vsinxdx = /T [0+ 4(0.509) + 2(0.707) + 4(0.841) + 2(0.931)
0

VA
+4(0.983) + 1] = = (13.608)

/2

f Vsinx dx = 1.188
0

4
11.[ x3+xdx;n=4
2
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Solucion:

Calculamos la longitud de cada subintervalo n de la integral definida en el intervalo
cerrado [2, 4] para n = 4 subintervalos, en consecuencia,
b—a 4-2

noC a0

Cada subintervalo es 0.5, en la siguiente tabla se realizan los calculos paran = 4,

n X flx) =yx3+x
0 2 | f@=J@3+2=3162

Ax =

1 25 | f(25) = /(25)% + 2.5 = 4.257
2 3 | f3)=/B)P+3=5477

3 35 | f(35) =+/(35)3 +35=681
4 4 | f4) =(4)?® +4=8246

Por lo tanto, utilizamos la regla de Simpson:
: 0.5
f x3 + xdx = ? [3.162 + 4(4.257) + 2(5.477) + 4(6.81) + 8.246]

2
4

0.5
f x* + xdx = —(66.63) = 11.105

2

4-ex
12.f—dx;n= 10
X
2

Solucion:
Calculamos la longitud de cada subintervalo n de la integral definida en el intervalo
cerrado [2, 4] paran = 10 subintervalos, en consecuencia,
b—a 4-2
— =0 — 0.2

Cada subintervalo es 0.2, en la siguiente tabla se realizan los calculos paran = 10,

Ax =
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X

e
w0 % fla) = >
e?
0 2 f(2) =— =3.694
e22
1 22 | f22) = —2 =4.102
24
2 24 | f(24) = —4 = 4593
26
3 26 | f(26)==——=05.178
eZ.8
e3
5 3 f(3) =~ =6.695
e32
6 32 | f32) = 3— = 7.666
e34
7 34 | f(34) = —4 =8.813
3.6
8 36 | f(36) = % =10.166
3.8
9 38 | f(38) === =11.763
4
10 4

£(4) = % = 13.649

Por lo tanto, utilizamos la regla de Simpson:

f_dx_

X

—dx = 14.676
x

2

13.[“

0

[3.694 + 4(4.102) + 2(4.593) + 4(5.178) + 2(5.873)

+ 4(6.695) + 2(7.666) + 4(8.813) + 2(10.166) + 4(11.763)

0.2
+13.649] = —(220.143)

1dx;n =8
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Solucion:

Calculamos la longitud de cada subintervalo n de la integral definida en el intervalo
cerrado [0, 2] para n = 8 subintervalos, en consecuencia,

b—a 2-0
Ax = =——=0.25
n 8
Cada subintervalo es 0.25, en la siguiente tabla se realizan los cdlculos paran = 8,
n X flx) =VYx2+1

0 0 | fO=Vor+1=1

1 025 | £(0.25) = }/(0.25)? + 1 = 1.015
2 05 | £(0.5) = /(0.5 + 1 = 1.057

3 075 | £(0.75) = 3/(0.75)? + 1 = 1.118
4 1| f() =312 +1=1189

5 125 | f(1.25) = {/(1.25)2 + 1 = 1.265
6 15 | f(1.5) = {/(1.5)2 + 1 =1.342

7 175 | f(1.75) = {/(1.75)2 + 1 = 1.42
8 2 f2) =322 +1=1495

Por lo tanto, utilizamos la regla de Simpson:
2

0.25
f Vx? + 1dx = —3~[1+4(1.015) + 2(1.057) + 4(1.118) + 2(1.189)

0

0.25
+4(1.265) + 2(1.342) + 4(1.42) + 1.495] = ——(28.943)

2
f Yx? + 1dx = 2.412
0

0.5
14.[ sin(e®>t) dt;n =8
0

Solucion:
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Calculamos la longitud de cada subintervalo n de la integral definida en el intervalo
cerrado [0, 0.5] para n = 8 subintervalos, en consecuencia,

pe=2"2_2270_ 0625
n 8

Cada subintervalo es 0.0625, en la tabla se muestran los calculos paran = 8,
n x; f(x;) = sin(e®5%)
0 0 £(0) = sin(e®5*%) = sin(1) = 0.841
1 0.0625 | £(0.0625) = sin(e®5*09625) = sin(1.032) = 0.858
2 0.125 | £(0.125) = sin(e®>*9125) = sin(1.064) = 0.875
3 0.1875 | £(0.1875) = sin(e®5*01875) = sin(1.098) = 0.890
4 0.25 | £(0.25) = sin(e®5*0?%) = sin(1.133) = 0.906
5 0.3125 | £(0.3125) = sin(e®5*0-3125) = sin(1.169) = 0.920
6 0.375 | £(0.375) = sin(e®%*%375) = sin(1.206) = 0.934
7 0.4375 | £(0.4375) = sin(e®5*04375) = sin(1.244) = 0.947
8 0.5 £(0.5) = sin(e®3*%5) = sin(1.284) = 0.959

Por lo tanto, utilizamos la regla de Simpson:
0.5

f sin(e®3t) dt =

0

5
[0.841 + 4(0.858) + 2(0.875) + 4(0.89) + 2(0.906)

0625

0.
+4(0.92) + 2(0.934) + 4(0.947) +0.959] = —

(21.69)

0.5
f sin(e®5t) dt = 0.452

0

2
Inx
15.[ dx;n =10
x+1
1

Solucion:
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Calculamos la longitud de cada subintervalo n de la integral definida en el intervalo

cerrado [1, 2] paran = 10 subintervalos, en consecuencia,
b—a 2-1 0.1
n 10

Cada subintervalo es 0.1, en la tabla se muestran los calculos paran = 10,

Ax =

n X fx) = xlr-ll_xl

0 1 F) = 11111 =0

1 11| f1) = 11n11+11 - 1112.11.1 = 0.0454
2 12 | fa2) = % - 1112# = 0.0829
3 13 | f(1.3) = 11.: 131 =2 _0.1141
4 14 | f(14) = 112141 _nlt_ 1402
5 15 | f(15) = 1“; 151 == _0.1622
6 16 | f(1.6) = 112161 - 1112_16;6 = 0.1808
7 17 | fu7) = 1121:1 - 1112_17'7 = 0.1965
8 18 | f(1.8) = 11.; 181 - 1112.15;8 = 0.2099
9 19 | f(1.9) = 11.2191 - 1112_19'9 =0.2213
10 2 f2) = 21121 = lnTZ = 0.2310

Por lo tanto, utilizamos la regla de Simpson:
2

Inx 0.1
fx 1 dx = =3 [0 + 4(0.0454) + 2(0.0829) + 4(0.1141) + 2(0.1402)

1

+4(0.1622) + 2(0.1808) + 4(0.1965) + 2(0.2099)

0.1
+4(0.2213) +0.2310] = —- (4:4166)
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2
Inx

f dx = 0.1472
x+1

1

2.6. Integrales impropias.

En la mayoria de los casos, las integrales que se encontraran no son dreas acotadas
en el plano. En este apartado se explica cdmo calcular integrales infinitas, debido a
que el intervalo de integracion es infinito (hasta 400 0 —o0), o bien porque en los
limites del intervalo la funcién a integrar tiende a infinito. Ahora bien, bastara con
hacer una pequefia revision de las técnicas de célculo de primitivas y entender bien
la nocidn de limite con el fin de comprender el contenido de esta seccién.

Considérese, la funcidn f para la cual t € (—o0,0) U (0, +0) tiene como funcidn,
sint
|t]®

Existen 3 integrales impropias posibles con limites de integracion infinitos, es decir,

f®) =

Caso 1: Si f es continua sobre el intervalo [a, +), entonces:

TO fx)dx = bEer f f(x)dx

Siel lim existe, entonces la integral converge, caso contrario diverge.

b—+

Caso 2: Si f es continua sobre el intervalo (—oo, b], entonces:

b b
[ o= yim, [ reoax

Siel lim existe, entonces la integral converge, caso contrario diverge.

a—>—oo

Caso 3: Si f es continua sobre el intervalo (—oo, +0), entonces:

Tof(x)dx = ff(x)dx + Tof(x)dx

En este caso la integral converge si las dos integrales también convergen, vy si al
menos una de ellas diverge entonces la integral diverge.
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A continuacién, se presentan el desarrollo de ejercicios de integrales impropias, en
las que se pueden incluir integrales inmediatas, por cambio de variables e inclusive
alguna técnica de integracion.

+oo
1[ dt
o241
0
Solucion:

Para evaluar la integral se utiliza la expresion 1.12 (véase capitulo 1) y después
evaluamos los limites aplicando el caso 1, por lo tanto,

+00
a li at lim [|tan1¢|§] = lim (tan™*h —tan™1 0
1= W, | g = Him [ltan T ¢lg] = lim (tan an™ 0)
0 0
+00
f a (tan™? tan~10)
— = (tan "~ o0 — tan
t2+1

0

Se sabe que,

. T

an— = oo
2

Finalmente,

U

tan™" ()
—_ = [00]
5 = tan

+ 00

dt s
f Zri-2 (converge)
0

+oo
L
") x(nx)3 x
e

Solucion:

Para evaluar la integral requerimos utilizar los pasos del cambio de variable, por lo
tanto,

u=Inx > du =—

Sustituimos en la integral impropia (caso 1), y evaluamos,

+00 b

b
= tim [P tim [ du= tim [ud
fx(IHX)Z‘ x_b_l’r‘floof(lnX)37_b—l>$loof(u)3 u= m-furau
e e

e e
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_2b

1 b
2 el - bl—l>r+noo“_Z(Inx)2 ]

e

1 .
fx(lnx)3dx_bl_l>r+noo[
e
+oo
fld—l' LN U B 11
x(Inx)? x‘birf‘oo[ 2(In b)2 21ne]‘bir+“w[ 2(In b)Z 2]

e

+oo
f 1 dy = 1

*(nx)? x =5 (converge)
e

+0oo

Int

3. t_zdt

1
Solucion:

Para evaluar la integral se debe aplicar la técnica de integracidn por partes
(f udv = uv — [ vdu), por lo tanto,

1
u=Int fdvzf—dt
t2

dt t~1 1
du:_ v:ft_zdt:_:__
t -1 t

Ahora se evalla la integral mediante integracion por partes y después evaluamos
los limites de la integral impropia (caso 1):

400 b b
In¢ _ [Int . 1 1dt
—dt = lim | —dt = lim (lnt)(——)—f——_
tZ b—>+co t2 b->+o t tt
1 1 1
400 B b b
Int . Int _ Int t!
—-dt = lim ——+ft—2dt = lim ||l-— + —
tz b—>+co t bo+oo _1
1 1
+oo
lntd -l / Inb 1 In1 1y " L Inb 1
wie=Jim |(-5-5) - (-5 -9 = w05 3)

1

Recordemos que,
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+ o0

Int ) 1 ) Inb 1 ) 1/b
——dt = lim (1——)— lim (—)zl——— lim (—)

t2 b—+o b b—>+0 \ b 00 b-o+oo \ 1
1
+oo

e y _q 1

f t24+1 _blTw(E) T
0
+oo
J‘ dt —1

mrio (converge)

3
4 f X 4
) xt+1 x
Solucion:

Para evaluar la integral requerimos utilizar los pasos del cambio de variable, por lo
tanto,

1
u=x*+1 = du = 4x3dx = x3dx = Zdu

Sustituimos en la integral impropia (caso 2), y evaluamos,

3

0
f x3 1/4du

dx = i Ly Yol m
m X—C_l)l‘_nw u _chl;noof?_zcll;nwl nul
oo c c

3

x3 1 1
f dx = 2 lim [In|x*+ 1|2 = 2 lim [In|3* + 1| — In|c* + 1]]
Cc—>—00 Cc—>—00

x*+1

—00

3

x3
f mdx = —0 (diverge)

—00

0
5 f L d
") x2+2x+3 x

Solucion:

Antes de evaluar la integral se debe utilizar el método de completar cuadrados en
el factor cuadratico, que se da como,
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2\? 2\?
x2+2x+3:[x2+2x+(5)]+3—(§) =x*+2x+1)+3-1
x2+2x+3=(@x+1)?+2

Sustituimos en la integral impropia (caso 2), y evaluamos mediante la expresion 1.12
del capitulo 1,

0

f ! d—l'f = im ean-t (9)]
243 e AP 42 emtwlg (a)c
oo c

0

f 1 D= 1 . 1(x+1)0

x2+2x+3 X—C_l)moo\/_an NeUR

0

N (2 -1
fx2+2x+3 x—\/—_c_l)l_noo[tan (ﬁ)—tan (c)]

0

I; [tanl( )—tan 1(00)]
x2+2x+3 \/_

Recordando que,

tan~1(o0) = r
2

Finalmente,

0

fﬁ \/_ [tan 1( ) - g] (converge)

+0o0

x
) ———
o (\/x2 + 1)
Solucion:

Para evaluar la integral utilizamos los pasos del cambio de variable, por lo tanto,
5 1
u=x“+1 = du = 2xdx = xdx=§du

Sustituimos en la integral impropia (caso 3), y evaluamos,
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+co 0 +00

x x x
[ 2w [ wr [ e
o (\/x2 + 1) o (\/x2 + 1) 2 (\/x2 + 1)

e x 2 %du ¢ 1du
f—3dx= limf 7+ limf 3
2, (Va2 +1) ol (Vu)t Ty (V)
400 1 1 d
x

f —3dx=§ lim u‘3/2du+zdlir+n u=32du

S Cc—>—00 —+00
—0o0 ( x2 + 1) c 0
Jfo x 1 w1z 1 w172 |?

— —dx == lim + = lim

A B e A

+ 00

f x 4 i 1° . 1 ¢
——dx=—lim | —=[ — lim [—
LErn el el

+oo

f x 4 i 1 ° . 1 a
——dx=—- lim |/—| — lim |—/——
(Ve F1) e lyx2 + 1l dotelyx? +1

—00 0

+ 00

[ o - am () () - ) - ()

—00

+ o0

x 1 1
f ——dx=—-1——— (— — 1) =0 (converge)
o (Vxr+1) ®©A\®

+oo
dx
[
x2+3x+2
0
Solucidn:

La integral impropia (caso 1) se aplica el método de integracién por fracciones
parciales. Se descompone la fraccion recordando el caso 1 para factores lineales.

+o00 + o0 b b

f dx _ dx — 1 f A dx + 1i B
Z+3x+2 ) G+ + D ote ) x+ 2 T ) 1
0 0 0 0

dx

Se realiza la operacion de la fraccion parcial, y utilizamos el método de
encubrimiento para calcular A y B, por lo tanto,
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1 A N B
x+2)(x+1) x+2 x+1

! ! A=-1
Ce+DL ., (-2+1) -
-1 -1 B=1
T+, (-1+42) -

Después sustituimos los valores obtenidos en la integral descompuesta en
fracciones parciales,

+00 b b

dx — i 1 d I 1 d
fx2+3x+2_bir+noofx+ SR el
0 0 0
+ o0 b b
f dx f f dx
XZ+3x+2 b—>+ b—>+oo x+1
0 0
400 b
X fim [—lr 42+ I+ 18 = lim [
fx2+3x+2_b—l>r+noo[_ nlx -+ 2]+ Infx + l]o_b—l>r+noo[nx+2]o
0
+oo
L P ol lim |1 In2
fx2+3x+2_b—l>r+noo_nb+2 n ”—b_1)r+noo[n |+n]
o I 1
y dx 1+ 1+%
f—= lim |[In|[—=||+In2=1In +In2=In1+1In2
X2 +3x+2 boke| |y 2 142
0 | b o0
+oo
f dx —In2
pranT T n (converge)
0
+oo
xtan~!x
————dx
(14 x2)2
Solucidn:

Para evaluar la integral propuesta utilizamos la técnica de integracidn por partes,
para lo cual se define u y dv,

X

u =tan_1x dv ZWdX

171



dx 1

du=—— V=—ri—
1+ x2 2(1+x?)
Sustituimos en la expresion definida por la integracién por partes (uv — [ vdu),

xtan‘lxd P 1 f 1 dx
@+ <2z * = (tan x)[ 2(1+x2)] 20+ x%) 1+x2

xtan~lx 1tan~'x lf dx
e Cdx=-—= +=
(1+x2)2 21+x%  2) (1+x2)?

En la ultima integral se utiliza la técnica de integracidn por sustitucion
trigonométrica (caso 2), en consecuencia,

x =tan@ = dx = sec®>0df
secd =+/1+ x? > sec?0 = (1 +x?)

Realizamos la sustitucidn trigonométrica,

xtan~lx 1tan"'x 1 (sec?6d6 1tan™'x 1 do
dx = + = + f
(1+x2)2 x= 21+x2  2) (sec20)2 21+x2 2 ) sec?6
xtan‘lxd 3 1tan‘1x+1f 20 do
A+ T 2122 T2)
\r‘l+,\':

xtan~lx ltan 'x

171
mdx = —EW+EJ‘E(1 +C0529)d9

xtan‘lxd 3 1tan‘1x+19+1 1 »
A+ T 2Tz T2 T 2"

Se utiliza la identidad trigonométrica de un angulo doble, y del tridngulo rectangulo
que representa al caso 2 de integrales por sustitucién trigonométrica, es decir que,

sin20 = 2sin 0 cos O

X 1
6 =tan1x sinf = ——— €0s 0 = ———
V1 +x? V1 +x2

Sustituimos la identidad trigonométrica de sin 20 y de 6,

xtan lx 1 tan'x 1 1

(1+x2)zdx:_E'W+Ztan_1x+§(251n9c059)
O X = B a1 () (=)
A+x22 T T2 142 e T\ T/ VT 1At
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xtan~lx 1 tam‘1x+1t . +1 x
—=- —tan"tx +—-
2 14+x%2 4 4 1+ x?

7 T dx =
a+x2)2 ™

Este resultado se sustituye en la integral impropia del caso 1, por lo tanto,

+oo
xtan‘lxd _ 1 tan‘1x+1t . +1 x |
A+x " T e || T2 THaz e T2 T
0
+oo
xtan‘lxd _ 1 tan‘1b+1t ‘1b+1 b )
A+ X i\ T2 Tpz T2 2 1+ b2
0
+oo
xtan‘lxd 1tan‘100+1t . +1 1/c0
_ = —— — [e'e) —
A+x22 %" 727w g 2T
0 2
[0.e]
Recordemos que,
T -1
§=tan () y —=0
Finalmente,
+oo
xtan‘lxd 3 1(0)+1(7T)+1(0)
T+ =72 2\2) 73
0
+oo
xtanlx i

m dx = 3 (converge)
0

9. Suponga que un cohete se lanza desde la superficie de la Tierra, sin considerar
toda resistencia excepto la de gravedad. Si v millas por segundo es la velocidad

necesaria para escapar del campo gravitacional de la Tierra, entonces
400

v? = Zngf x~2dx
R
donde g es la gravedad constante medida en millas por segundo en la

superficie de la Tierra y R millas es el radio de la Tierra. Con g = 0.006094 y
R = 3963, aproxime la velocidad de escape con tres digitos significativos.

Solucion:

Para evaluar la integral se utiliza el caso 1, por lo tanto,
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, 1,° 1 1
v? = 2gR? bhrp f ~2dx = 2gR? lim |—; = 2gR? lim |——— (— —)]
R

b—+o0 R b—+00 b R

v? = 2gR2 [~ 2 — (= 2)] = 2982 (%) = 298
gR* |- = (-3)| = 29R*(5) = 29

Finalmente, con los datos de gravedad y radio de la Tierra, la velocidad es

v=,/2gR = \/2(0.006094)(3963)
v = 6.950 millas/s

10. La velocidad promedio de las moléculas en un gas ideal es
4 M \3/? e s _ivzd
V=—|—— v°e 2RT dv
\/E(ZRT) f

donde M es el peso molecular del gas, R es la constante del gas, T es la
temperatura del gas, y v es la velocidad molecular. Demostrar que

8RT

vE M

Solucion:

Para evaluar la integral se utiliza la técnica de integracién por partes, por lo tanto,

_M 2
p = v? qu=fveZRT"dv
Usamos cambio de variable para dq,
M d M 2vd d RTd
= —-— =1 = - — = e p—
u SRTY u >RT 2vav vdv 7
Derivamos p y sustituyendo el cambio de variable, queda
RT M 2
dp = 2vdv que“(—— u ——f “du———e ZRT"

Sustituyendo en la expresion que define la integracidn por partes, queda
M 2
f v3e 2R dv = pq — f qdp

M M M
fv3e_m”2dv = (v?) (—%e_mvz) - f —Z—Te_mvz (2vdv)
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3 —M 2 T M,
v>e 2RT dvz—ﬁv e 2RT° +—— | ve 2RT dv
La ultima integral ya se obtuvo el resultado y se sustituye, por lo tanto,

M 2 T M
v3e 2RT dvz—ﬁvze 2RT" + ——

M RT M RT\?> M
fv%fmvzdv - —ﬁvze_m"z +2 (ﬁ) ¢ 2rT"

Volviendo a la integral impropia inicial, utilizamos el caso 1 del primer tipo de
integrales impropias,

3 b
2

== ( - ) li 3¢-2RT"d
V=—\T"77T7= m ve v
2RT/) b+

Vi J
5= ( M )3/2 1 T ZA};ITV +2(RT)2 aRT '
V=T72\2rT) ot ve ) € .
5=t () i {[-EE et 2 (B ] - 2 (B0 o

7\2RT) b+ M M
__4(M)3/2 0+2(RT)20 2(RT)2 4 (M)3 2(RT)2
V= Jz\2RT ) © M) |~ Yz \2RT M

En los ejercicios desarrollados se utilizaron el primer tipo de integrales impropias
(casos 1 a 3), ahora se describe y analizan el segundo caso de integrales impropias,
es decir, que se trata de integrales discontinuas. Estas son integrales que tiene
integrandos discontinuos. El procedimiento aqui es basicamente el mismo con una
sutil diferencia. A continuacién, se muestran los casos generales que estudiaremos
para estas integrales:
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Caso 1: Si f es continua sobre el intervalo [a,b), pero no continua en x = b
entonces,

fb fGdx = lim f fGodx

si el limite existe y es finito. Téngase en cuenta que en este caso es imprescindible
utilizar un limite por la izquierda, debido a que el intervalo de integracidn se
extiende por toda la parte izquierda del limite superior.

Caso 2: Si f es continua sobre el intervalo (a, b], pero no continua en x = a
entonces,

b b
f f@)dx = lim f f(x)dx

si el limite existe y es finito. De manera similar al caso 1, este caso es imprescindible
utilizar un limite por la derecha, debido a que el intervalo de integracién se extiende
por toda la parte derecha del limite superior.

Caso 3: Si f no es continua en x = c donde a < ¢ < b entonces,

ff(x)dx=ff(x)dx+ff(x)dx

De la misma forma que en el caso del intervalo infinito, es necesario que ambas
integrales sean convergentes entre si para que la integral también lo sea. En caso
de que alguna de las dos integrales sea divergente, también lo sera esta integral.

Caso 4: Si f no es continuaen x = ay x = b entonces,

ff(x)dx=ff(x)dx+ff(x)dx

En la que ¢ es cualquier nimero, y es necesario que ambas integrales sean
convergentes entre si para que la integral también lo sea.
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A continuacién, se presentan el desarrollo de ejercicios para el segundo tipo de
integrales impropias (4 casos), en las que se pueden incluir integrales inmediatas,
por cambio de variables e inclusive alguna técnica de integracién.

3
11[1(1
—dax
xvx

Solucion:

3

Para evaluar este segundo tipo de integracion impropia se utiliza el caso 2, en la que
3 3
de = lim | —=dx = lim [ x3/%dx = lim |
X\/_ s—>0+ X\/_ s—0t s-o0t
N

x = 0 no es continua, por lo tanto,
3

[mpe=iml5- (-5 m()- —%%

3

1
f ——dx = (diverge)
0

1
12[
J \/1—x2

Solucion:

Este tipo de integral se resuelve aplicando el teorema 1.11 (véase capitulo 1) y a su
vez corresponde al segundo tipo de integracidn impropia (caso 1), enlaque x = 1
no es continua, por lo tanto,

dx = hm [Isin™tx[3] = liql_[sin‘1 s —sin~10]
S—

T
——dx = lim[sin"!s — 0] =sin™1(1) = = (converge)
xVx 51 2

Cos X

Vs
13.[—
J V1 —sinx

dx
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Solucion:

Este tipo de integral se resuelve aplicando cambio de variable,
u=1-sinx = du = —cosxdx = cosxdx =—du

Ademas, corresponde al segundo tipo de integracién impropia (caso 3), en la que
x= %no es continuay 0 < g < 1, por lo tanto

T S T
cos x d I —du 4l —du
——dx = lim | — im | —
J V1—sinx som/2” ) Vu o tom/zt J Vu
s S T
CoS X
———dx=— lim | u"?du— lim | u?du
V1 —sinx som/2” tom/2+
0 0 t
s
CoS X
f =— lim_[|2va]| - 1lim []2val]]
smx s—m/27 0 tom/2t t
Cos X

. - s . i -
=2 i [VT=sinx| ] -2 tim [VT=sinx]

O\“:‘

\/%d —ZSlgTrrlz [\/l—sms—\/_]—Z 11m [\/_ V1 —sin ]

[ 2= 2 [imanZ-1)-2(1- =)
——dx = — —sin-—-1]|— - —sin—
J 1—sinx 2 2

T

O\“:‘

Cos X

——dx=-2(v1-0—-1)—-2(1-+v1-0)=0
J V1 —sinx ( ) ( )
1
14[
0\/1—x2
Solucidn:

Para evaluar la integral propuesta utilizamos la técnica de integracién por
sustitucion trigonométrica (caso 1). La figura muestra el tridngulo rectangulo que
representa al caso 1.

x =sin@ =3 dx = cos6do
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cosf =41 —x?
Realizamos la sustitucidn trigonométrica,

sin? @ cos 6 d6

xZ
— = = i 2
fmd" f cos 6 fsm 6d6

Aplicamos la siguiente identidad trigonométrica,
) 1
sin? g = 3 (1 — cos 26)

Por lo tanto,
f a d—lfu 20) = 26 — ~sin 26

Nepy= x =5 cos =3 2 Sin
Se utiliza la identidad trigonométrica de un angulo doble, y para el tridngulo

rectangulo que representa al caso 1 de integrales por sustitucidon trigonométrica,
entonces,

sin20 = 2sin 0 cos O

6 =sin"tx sinf = x cos@ =4/1 — x2

Sustituimos la identidad trigonométrica de sin 20 y de 6

f ¥ v = Lsintx— L (2sin0cos8) = Lsintx — L (sin 6 cos 6)
Nepy= x =5sin™x —2(2sinf cos §) = —sin™" x — = (sin & cos
dex = lsin‘1 x— lx\/1 —x2= 1(sin‘lx —xy1-— xz)

I 2 2 2
Este resultado se sustituye en la integral impropia del caso 1, enlaque x = 1 noes
continua, por lo tanto,
2

x 1 s
ﬁdx = Slirln_ “E (sin‘lx —xy/1—x2) ]

0

1
f\/%dx = %Slirln_ [(sin—l s— sm) - (Sin—l 0— Om)]
0

O\n—k
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2
2= 2 [ s - T = st 1 -40) = S

o

1
[t
X =—
a 1 — x2 4
1
15[ )
J m
Solucion:

Este tipo de integral corresponde al segundo tipo de integracion impropia (caso 4)
en la que no es continuaen x = 0y x = 1, por lo tanto

1 1/2 .

lim

1 1 1
[ G R, (ﬁWm)d““m (\/_ =)

o

]

f(\/_lf m)dx—hm “2‘/_ 2v1—x| ]+llm[|2\/_ 2T — x|

!(TlfvllTx)d"=2}1%[—V5+V1—s]+2tlgrp_[ﬁ—m]

f(v_lz m) dx = 2(—0+V1-0) +2(Vi+V1-1)

f(\/_15+\/11Tx)dx=2(1)+2(1)=2+2

2
16[
| =™

Solucion:
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La expresion 2x — x2 se realiza la operacién de completar cuadrados:

2

Zx—xz=—(x2—2x)=—[x2—2x+(_72) —(%)2]=1—(x2—2x+1)

2x—x?>=1—(x—1)

Sustituimos en el denominador del integrando, y se resuelve aplicando el teorema
1.11 (véase capitulo 1) y ademas corresponde al segundo tipo de integracion
impropia (caso 4), enlaque en x = 0y x = 2 no es continua, por lo tanto,

dx = lim dx + lim

1 t
1 J‘ 1 J‘ 1 d
— —_— _—m x
V2x — x? 20 1= (x - 1)? 2 1= (x - 1)?

O\‘N

2
1
—_— = 1i in—1 _ 1 . " _ ¢
f g dx = lim[Isin™ (e = DI + lim [[sin™ G = D]
0
‘ 1
—_— = i —ein~1(c — . C e, _
fmdx }L%’JO sin~'(s 1)]+tllr2r1_[sm (t—1)-0]
0
2
I;d" = —sin™*(=1) +sin"'(1)
| V=

Se sabe que,

T T
i — ) = — =gin~ !
sin (2) = > sin™+(1)
T T
)= — —— —sin~1(—
sm( 2) 1 = > sin™'(-1)
Finalmente,
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Capitulo 3:
Aplicaciones de
integracion:
areas,
volumenes y
longitud de arco
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3.1. Area de una regién plana.

Supongase la gréfica de una funcién positiva y = f(x) y que se desea obtener el
area de la curva y = f(x), el eje x y las rectas x = a y x = b (véase la figura del
area sombreada debajo de la curva). Si la curva y = f(x) no es una recta, por ahora
no se puede calcular el drea con precision.

VA A(x) es el area

Jy — y=fx)

a b X

Si el drea estd completamente por encima del eje x, como ocurre en este caso, viene
dada por la integral definida:

b
A= ff(x)dx (3.1)

Considérese la regién del drea "A(x)" sombreada S comprendida entre dos curvas
y = f(x) ey = g(x) y entre las rectas verticales x = ay x = b, donde f y g son
funciones continuas y f(x) = g(x) (véase figura izquierda) o g(x) = f(x) para
todo x en [a, b].

Yy Yy
y=fx) y=8(x)

7 .'/:g(,\)’ 3)%(\5 7

Por lo tanto, el area para f(x) = g(x) y g(x) = f(x) respectivamente son:

b b
A= f [FO) —g@ldx  (3.2) 4= f g0 — fF@ldx  (3.3)

La siguiente figura muestra la interpretacidn grafica del area entre dos curvas para
las ecuaciones 3.2y 3.3.
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S~—— S x; ~— — xi
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La siguiente figura muestra las areas A,, 4, y A; comprendidas entre las curvas f (x)
y g(x). Para A, se observa que f(x) = g(x) en el intervalo [a, b], mientras que en
la superficie A, se observa que g(x) = f(x) en el intervalo [b, c], y finalmente en
la superficie A; se observa nuevamente que f(x) = g(x) en el intervalo [c, d]. Por
lo tanto, el drea total es definida por:

4= f [0 - g@ldx + [1

v A

b

d

g(x) = f(x)]dx + f[f(x) —g)]dx (34)

y=g(x)

La explicacién del area bajo una curva y entre dos o mas curvas fue descrita y

analizada en funcién de "x", ahora se presenta con relacién a la variable

d
A== x0ay = [F0) - g0ldy  G5)

v
d.

A

d
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1.  Calcular el drea entre las curvas f(x) = x2y g(x) = x.
Solucién:

Primero calculamos los puntos de interseccion entre las funciones f(x) y g(x),
igualando ambas funciones:

f)=gx)
=X = X
x(x—1)=0 = x=0Ax=1

Los puntos de interseccién 0y 1 se muestran en la figura y corresponden a los limites
ay b de la integral del area entre dos curvas (véase la region sombreada entre las
curvas gy f). Por lo tanto,

4= f [9G0) — F0)]dx = f () — ()]dx = f (x — x2)dx

1
1.3
3

Wl =

— 2 3_1
—5(1) —5(1) =5~

4 T T T T T
f(x)=x?

35T g(x)=x 7
[—JArea entre g(x) y f(x)

0.5 1

2. Calcular el drea entre las curvas f(x) = x% — 2xy g(x) = 4x — x2.

Solucién:
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Obtenemos los puntos de interseccion entre las funciones f(x) y g(x), igualando
dichas funciones:

f(x) =g
x? — 2x = 4x — x? = 2x2—6x=0
2x(x—3)=0 = x=0 A x=3

Los puntos 0 y 3 se muestran en la figura y corresponden a los limites a y b de la
integral del drea de la regién sombreada entre las curvas g y f. Por lo tanto,

3

[(4x — x?) — (x% — 2x)]dx = f(6x —2x®)dx

0

b
4= f [9(0) — F(0)ldx =

N T w

3

2
= |3x2 —Zx3| =3(3)2-=(3)%=27-18
37, 3
=9y?
25 v
f(x)=x2-2x
207 _g(x)=-x2+4x

[JArea entre g(x) y f(x)

3 2 A 0 1 2 3 4 5 6
3. Calcular el drea entre las curvas f(x) = x3y g(x) = VYx (primer cuadrante).

Solucién:

Igualamos las funciones f(x) y g(x) para obtener los puntos de interseccién:
x3 =3x > x% =x

—x=0 = x(x2—-1)=0
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Los puntos de interseccién son -1, 0, 1 pero la restriccién del problema se debe
considerar el primer cuadrante, es decir los puntos 0 y 1. En la figura se muestran
los limites a y b del area de la regidon sombreada entre las curvas gy f. Por lo tanto,

b 1 1
4= [lo00 - fedx = () - )]ax = [ (62~ x?)ax

3 1 * 3 1 3 1
= [Zx43 2yt =23 -Z(1)t=2-C
Gx 3| =307 - =33
1
_ .2
2u
3.5 T !
f(x)=x°
gx)=x""3
3t [ Area entre g(x) y f(x) |

1.5

4. Calcular el drea entre las curvas f(x) = 4(1 —x?) y g(x) = 1 — x2.
Solucién:

Primero calculamos los puntos de interseccion entre las funciones f(x) y g(x),
igualando ambas funciones:

4(1—x?)=1-—x? = 4 —4x%2 =1—x2
3 = 3x? = x==1

Los puntos de interseccién son -1y 1. En la figura se muestran los limites a y b del
area de la regidon sombreada entre las curvas f y g. Por lo tanto,
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b 1
A= f[f(x) —g()]dx = f[(él- —4x?) — (1 —x?)]dx = f(3 —3x%)dx

= [3x —x°|L; = [3(D) = (D*] - B(-1) - (-D?]
=[B-1]-[-3+1]=2-(-2)

= 4 u?
5 T T T T T T T
f(x)=4*(1-x?)
gx)=1-x?
4r [JAreaentre f(x)y g(x)| T
3 - -
2 - .
1L J
0 - -
p | | i ! | | {
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

5. Calcular el drea entre las curvas f(x) = 6 — x%2y g(x) = x? + 4x.
Solucién:

Igualando las funciones f y g se obtienen los puntos de interseccién entre ellas:
6—x2=x%+4x > x2+2x—-3=0

x+3)(x—1)=0 = x=—-3Ax=1

Los puntos de interseccién son -3 y 1. En la figura se muestran los limites a y b del
area de la regidon sombreada entre las curvas f y g. Por lo tanto,

b 1 1
A= f[f(x) —g(x)]dx = f[(6 —x2) — (x% + 4x)]dx = f(6 — 4x — 2x%)dx

2 1
= |6x —2x% —=x3

-3

188



2 2
A =6 - 2012 -5 (17°| - [6(-3) — 2(-3)? = 5 (-3’

2 10
:[6—2—§]—[—18—18+18]:?+18

f(x)=6-x2
glx)=x?+4"x

6 - | Area entre f(x) y g(x)

4 s 2 1 o 1 2 3

6. Calcular el drea entre las curvas f(x) = x?2 —2x — 3y g(x) = 2x + 2 sobre
[—1,6].

Solucién:

Igualando las funciones f y g se obtienen los puntos de interseccién entre ellas:

x2—-2x—-3=2x+2 > x2—4x—-5=0

x+1DXx-5 =0 = x=—-1A x=5

Los puntos de interseccidn son -1 y 5. En la figura se observan dos regiones
sombreadas considerando el rango dado por el problema de [—1, 6] en la que se
encuentran los dos puntos de interseccion. El area 1 (A,) corresponde a la region
sombreada entre las curvas g y f, y el drea 2 (4,) de la regidon sombreada entre las
curvas fy g. Por lo tanto,

b c
A=A +4, = f [9(0) — F)dx + f [F 00 — g)]dx
a b
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5
A=A+ 4, = f[(2x+2)—(x2—2x—3)]dx

+ f[(xz —2x—3)— (2x + 2)]dx
5
5

6
f(S + 4x — x?)dx + f(xz —4x — 5)dx
1 5

5 6

1 1
= 5x+2x2—§x3 +|§x3—2x2—5x

-1 5

_ . )
= {5 + 2657 -357| - [s-1 + 217 -3 -1y}
+ % (6 = 2(6)* = 5(6)| - E (5 =26 - 5(5)]}

= :75 - E] - [—3 + %]} + {[—30] [ 75]}
5 1

3 3
=75+3 12 30 125 +75 =123 251
h 3 3 3 h 3
118
—__ "2
3 u
20 b
f(x)=x2-2x-3
g(x)=2x+2
[""JArea entre f(x) y g(x) 2 e
15 X:5 g )_gl.,)/ T
Y:12
./ X: 6
Y: 14
10 b
5r 1
\\ N
fi
| N 9(H) |
X: -1
Y:0
-5 L 1 1 1 ]
-4 2 0 2 4 6 8
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7. Hallar el drea entre las curvas f(x) = 2x3 — 3x2 — 9x y g(x) = x3 — 2x2 —
3x.

Solucién:

Igualando las funciones f y g se obtienen los puntos de interseccién entre ellas:
2x3 —3x% —9x = x3 — 2x% — 3x > x3—x?2—-6x=0
x(x?—x—-6)=0 > x(x+2)(x—-3)

x=0A x=—-2AN x=3

Los puntos de interseccién son -2, 0 y 3. En la figura se observan dos regiones
sombreadas considerando los puntos de interseccidn. El area 1 (4,) corresponde a
la region sombreada entre las curvas fy g, y el drea 2 (4,) de la regidon sombreada
entre las curvas g y f. Por lo tanto,

b

A=A+ d, = [1f@) - 9G] dx+f l9() — FGOld
b

a

= f[(2x3 —3x% —9x) — (x% — 2x% — 3x)]dx

+ f[(x3 —2x% —3x) — (2x3 — 3x% — 9x)]dx

f(x3 —x2 —6x)dx + f(6x + x2 — x3)dx
0

1 1 3
3x2 4+ Zx3 —Zxt
+ x+3x 4x

1 1
= Zx”‘ —§x3 — 3x?

= ([0 -3 07 - 307 - [; -2 - 5 -2 - 3¢-27}

+ [3(3)2 +3@7 - 73] - [307 + 30 - 7]

~[io1-[rae3f}+ fro-3] -0 = e-5-3
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30

f(x)=2x>-3x2-9x "J
251 3.0y2 /
g(x)=x>-2x%-3x /
2 [""JArea entre f(x) y g(x) :
151
10 |
5 X:0
1 Y:0 /
0 f L] u
X:3
5 Y:0
Y:-10 2
ol )
15 /’/ I . . . L ‘ '
3 2 -1 0 1 2 3 4 8

8. Hallar el drea entre las curvas f(x) = §x3 - Exz —5xyg(x) =x3—4x% —
11x + 30.

Solucién:

Igualando las funciones f y g se obtienen los puntos de interseccién entre ellas:

1 2
§x3—§x2—5x=x3—4x2—11x+30 = x3-5x*—-9x+45=0

x?>(x—5)—9(x—-5)=0 > (x=-52-9)=0
x=5A x=43

Los puntos de interseccién son -3, 3 y 5. En la figura se observan dos regiones
sombreadas considerando los tres puntos de interseccién. El drea 1 (4;)
corresponde a la region sombreada entre las curvas gy f, y el area 2 (4,) de la regién
sombreada entre las curvas fy g. Por lo tanto,

b c
A=A +4, = f [9(0) — F)dx + f [F 00 — g)]dx
a b

3
= ([ex® — a2 — _(2
(x3 —4x* —11x + 30) 3 3 5x || dx
-3

5

x3  2x?

+f < -5 5x ) - (¢ — 4x? — 11x + 30) | dx
3
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A:_f:(_

2x3
3

5
10x? 2x3  10x?
—6x + 30 dx+f ——+ 3 + 6x — 30 |dx

3 ) 3
3 x*  10x3 5 3 x*  10x3 5 5
_Z— ) — 3x +30x_3+|—€+ 9 + 3x _30x3
(I3t 103)° ,
= { < o9 ~ 332+ 30(3)]
(=3)* 10(=3)° )
_[ — - —5——3(-3) +30(—3)]}
5% 10(5)3 52 .
+{[—€ 5 +3(5)% — 30( )]
3¢ 10(3)3 ,
- [_€ 5 +3(3) - 30(3)]}

- () -

50 ' '
(x)=1/3x>-2/3x%-5x
wl g(x)=x>-4x2-11x+30 1
[JArea entre f(x) y g(x)
30
20 A1
9(x)-f(x)

10

0 -
-10 |
-20

2 0 2 4 6 8

9. Hallar el drea entre las curvas f(x) = x3 + 3x%2 + 2x y g(x) = 2x2 + 4x.

Solucién:

Igualando las funciones f y g se obtienen los puntos de interseccién entre ellas:

x3 + 3x% + 2x = 2x?% + 4x = x32+x>—-2x=0



x(x2+x—-2)=0 = x(x+2)(x—1)=0
x=0A x==-2ANx=1

En la figura se observan dos regiones sombreadas considerando los tres puntos de

interseccion. Por lo tanto,
c

b
A=A+ d, = [[F@) - g@dx + [ [9G) - FGax

b

= f[(xz’ + 3x% 4 2x) — (2x?% + 4x)]dx

+ f[(sz + 4x) — (x3 + 3x? + 2x)]dx

0 1
= f(x3 + x2 — 2x)dx + f(—x3 —x% + 2x)dx
-2 0
Xt o3 x* %3 1
=|—4+—- 2 +|-——=+ z
273 3
(-2)* (-2)° n* @2
=4q— - (-2 2 - - 12
{ [ ” + 3 ( ) + 4 3 +
37
— 2
Ve
15 7 ' ' T T ' /
\ f(x)=x3+3x%+2x /
\ /
\ g(x)=2x%+4x /
\\ [ Area entre f(x) y g(x) /
108\ |
. /
\ /
\ [ |
5} AN X1
\\ Y: 6
N X:-2
. Y:0 2
ol \. N ™ ) |
f(x)-g(x) X: 0
Y:0
5t 1
4 3 2 1 0 1 2
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3.2. Volumenes de sdlidos de revolucion: método de las rebanadas, discos y
anillos.

En esta seccidn se estudia el método para hallar el volumen de un sélido generado
al girar una region alrededor de una linea horizontal o vertical mediante integracién.
Supodngase que se tiene una curva y = f(x) en un intervalo [a, b], tal como se
muestra en la figura.

=

Si la curva estd comprendida entre x=a y x=b y la sometemos a una rotacién
completa alrededor del eje x (es decir, 3600 o 27), se obtendra la superficie de un
sélido en rotacion, que se denomina sdlido de revolucién, tal como se representa
en la figura.

>

Y
=

Sea un soélido comprendido entre las rectas verticales x=a y x=b, con una seccién
transversal en el plano que pasa por x y es perpendicular al eje x de A(x). Si A(x) es
continua en el intervalo [a, b], el intervalo se puede dividir en n subintervalos de
igual anchura, Ax, y elegir un punto, x;, en cada intervalo. El volumen del sélido
formado al girar la regién limitada por la curva y el eje x entre x=a y x=b alrededor
del eje x viene dado por,

n b

V = lim A(x;))Ax = fA(x)dx (3.6)
i=1 a
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3
>

De forma analoga, el volumen del sélido que se forma al hacer girar la region

delimitada por la curva y el eje "y" entre y = c e y = d alrededor del eje "y" estd
dada por,

da

v=lin Y 400y = [ A0y 37)

c

y
A

d

L > X

Siunacurvay = f(x), laforma de la seccidn transversal tiene forma de disco sélido
o bien de circunferencia cuya area es A = mR?, donde R es el radio. El valor del
radio de cada circunferencia o disco representard el valor de la funcién en ese
punto. En consecuencia, su seccidn transversal perpendicular al eje de revolucion
es un disco de radio R=f(x), y definida por,

A() = n[f ()]

Entonces, el volumen del sélido que se forma al girar la region limitada por la curva
y = f(x) y el eje x entre x=a y x=b alrededor del eje x, puede expresarse como:
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b
V= rrf[f(x)]zdx (3.8)

y y
A A
y=f(x) y=f(x)

P

(3 | oo

Un proceso similar se puede seguir para calcular el volumen de un sélido con
rotacidn alrededor del eje y. El volumen del sélido resultante de la revolucidn de la

region delimitada por la curva x=f(y) y el eje y entre y=cy y=d alrededor del eje y
estd dada por,

d
V=n f FO)dy  (39)

y y
A A
M
d
< =(y) <« xF(y)
¢ <
» X » X
0 0

Finalmente, se describe el método de anillos 0 método de la arandela que no es mas
que el volumen del solido de revolucién resultante de la regién acotada por dos
curvas f(x) y g(x) que se hace girar alrededor del eje x o del eje y. Las expresiones
de los volimenes de solidos de revolucién estan definidas por,

b
V=n f P - [g@Bdx  (3.10)
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d
V=n f O - g Bdy (311

A continuacion, se desarrollan ejercicios de cdlculos de volimenes de solidos
usando métodos de rebanadas (ecuaciones 3.6 y 3.7) y del disco (ecuaciones 3.8 y
3.9).

1. Calcular el volumen del solido que se muestra en la figura utilizando el método
de las rebanadas si se proporciona una seccidn transversal cuya forma es un
triangulo equildtero a un didmetro de una base circular cuyo radio es 4
unidades.

Solucion:

Primero analizamos la base del solido que tiene una base circular (véase la figura
izquierda), y una seccién transversal de forma de un tridngulo equilatero (véase la
figura derecha).

Obtenemos la ecuacidn de la curva a partir de la ecuacién de la circunferencia
definida por:

x2+y? =472 = x2+y2=16

y =416 —x2
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Después, se obtiene el drea de la seccion transversal (método de la rebanada) para
calcular el volumen usando la expresion 3.6.

AW =b-h=y- @ = 0% =y Y3y =V3y* = 3(Vi6—2?)
A(x) =V3(16 — x?)
Finalmente,

b

V= fA(x)dx = f\/g(16 —x%)dx =3 f(16 —x%)dx = \/§|16x —%x3

a

4

-4

v =v3{[1604) 3 @°] - [16-0) 5 -7}

y o256 = g
=—3 Vs

2. Usando el método del disco, obtener el volumen del solido de revolucién que
la regién acotada por las curvas y = v/x,

n.n

se forma al girar alrededor del eje "x
y=0yx =4.

Solucion:

Antes de utilizar la expresion 3.8 se bosqueja la grafica de la curva y = /x que ha
sido rotada alrededor del eje x (véase la figura).

Por lo tanto,
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=[] -}

4 4
1
V:nf[\/}]zdx=nfxdx=n|zx2
0 0
V =8mu

3. Utilizar el método del disco, para determinar el volumen del solido de

revolucion que se forma al girar alrededor del eje "x" |a regidn acotada por las
curvasy =9 —x?,y = 0.

Solucion:

Antes de utilizar la ecuacién 3.8 se bosqueja la gréfica de la curva y = 9 — x?
considerando que y = 0 se establecen las rectas x = =3 y x = 3, y que ha sido
rotada alrededor del eje x, tal como se muestra en la figura.

Por lo tanto,

3 3
V=m f(9 —x%dx=m f(81 —18x% + x")dx
-3 -3

Por simetria,

200



3

1
V= 2nf(81 —18x?% + x*)dx = 27 |81x —6x3 + gxs
0
0

3

V= 2n{[81(3) —6(3)° +%(3)5] - [O]}

y - 1296
-5

mud

4. Utilizar el método del disco, para determinar el volumen del solido de

revolucion que se forma al girar alrededor del eje "y" |a regién acotada por las
curvasy =x2+1,x=0y =5.

Solucion:

En este ejercicio se utiliza la expresién 3.9 para obtener el volumen del solido de
revolucion generado al rotar con respecto al eje y (véase la figura). Por lo tanto, la
curvay = x2 + 1 debe expresarse en funcién de y:

x2=y-1 > x=,y—-1
x=fQ) = fOO=yy-1
Ahora se bosqueja la grafica de la curva y = x% + 1 considerando que si x = 0 se

establece larectay = 1y se sabe que y = 5, y que ha sido rotada alrededor del eje
y, tal como se muestra en la figura.

')(

Por lo tanto,
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V= nfd[f(y)]Zdy 3 nf(ﬂ)zdy = nfs(y— 1)dy = n|§y2 —yi
V= n{[% (5)2 — 5] _ E (1)? — 1]} — 8w’

5. Utilizar el método del disco, para determinar el volumen del solido de

revolucion que se forma al girar alrededor del eje "x" |a regidn acotada por las
curvasy =4 —x2,y =1 —0.25x2
Solucion:

Sean,

2 1 2
fe)=y=4-x"y gly=y=1-7x
Igualamos f(x) con g(x):

1
4—x2=1—1x2 = 16 — 4x? = 4 — x?

12 = 3x? = x =42

Los puntos de interseccion entre las dos curvas son -2 y 2, cuyos valores seran los
intervalos de la integral de volumen (véase la ecuacidn 3.10) mediante el método
del disco. La figura muestra la gréafica en 2D de las curvas f(x) y g(x) y la grafica 3D
del solido de revolucién alrededor del eje x de la regidén acotada por las curvas en
mencién.
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Ven f {IFOP - [g()]2dx = m f [(4 —x2 - (1- %x)] dx

V—nf[(16—8x2+x4)—(1—1x +ix )] dx
B 2 16

-2
Por simetria,

2
V2f5 +15 )d—215 5+3 2
s —x TgX ) dx 7r| X—oX° e
0

V= Zn{[IS(Z) —;(2)3 + 13—6(2)5] - [0]} = 2730 — 20 + 6}

V=32rud

6. Usando el método de la arandela, calcular el volumen del sélido obtenido al
rotar la regién bajo la curva y =9 — x? para 0 < x < 3 alrededor del eje

vertical x = —2.
Solucion:
En este caso, el eje de rotacion es la linea vertical x = —2, en consecuencia, la
seccién transversal perpendicular a x = —2 tendra una anchura dy, esto significa

que tanto la funcién como los limites de integracidn estan en funcién de y. Por lo
tanto,

y=9—x? > x2=9—y > xX=49—y

Otro punto importante es considerar que al rotar verticalmente en la linea x = —2
el solido se generado internamente tiene un hueco, por lo tanto,

fO)=J9-y+2 gy =2

Finalmente,

d 9
v=r [ o - g0y = [ [((T=y+2)" - @] ay

V=nf[(9—y)+4-,/9—y+4—4]dy=ﬂf(9—y+4,/9—y)dy
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1, 8 2
V=m|9% -5y* =500 -y)3

0

v=m [9(9) —%(9)2 —2(9 - 9)%] - [_2(9 - o)%]}

V=m -(81 —%) - (—72)] = n(%+ 72)
225

V=—
> Tu

3

-6 4 -2 0 2 R

7. Usando el método de la arandela, calcular el volumen del sélido obtenido al
rotar la regidn entre las curvas y = secx,y = 1, x = —1, x = 1 alrededor del
eje x.

Solucion:

En este caso, se tiene una funcion trigonométrica secx (véase la figura) que
interseca con lasrectasy =1, x = —1, x = 1 y que al rotar con respecto al eje x
se obtiene el sélido de revolucién que se muestra en la figura. En consecuencia, la
seccién transversal es una arandela con radio interior (y = g(x) = 1) y radio
exterior (y = f(x) = secx). Por lo tanto,

b 1
V=n f IO - [g@Ddx = 7 f [(secx)? — (1)2]dx

1
V=m f(seczx—l)dx
-1
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Por simetria,

V= 27tf(sec2 x — 1) dx = 2x|tanx — x|} = 2m{[tan(1) — 1] — [(tan(0) — 0]}

V =2n(tan1—1) = 3.502 u3

_____________ N

-4

8. Usando el método de la arandela, determinar el volumen del sélido obtenido
al rotar la region entre las curvas y2 = x, x = 2y alrededor del eje y.

Solucion:

Usando la expresién 3.11 para el método de arandelas alrededor del eje y, las dos
curvas f(y) = 2y y g(y) = y? (véase la figura) corresponden al radio exterior e
interior respectivamente. Por lo tanto, se procede a calcular las intersecciones de
ambas curvas,

f) =9 = 2y = y? = y>—=2y=0
yiy—2)=0 = y=0Ay=2

En este caso, los puntos que intersecan las curvas f(y) y g(y)sony =0 A y = 2.
El sélido de revoluciéon generado alrededor del eje y se muestra en la figura, es decir,
que el volumen del sélido es,
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2

v =r [0 - [90)dy = [ [29)? = )1y

0

2
4 1
V= 7rf(4y2 —yHdy =m |§y3 —gys

2

0

r=rfftorter|-of-r(3-3)
V=%nu3

3.3. Sdlidos de revolucién: método de capas cilindricas.

En algunos casos puede resultar dificil o imposible determinar el volumen de un
sélido de revolucién (véase la figura 3D) por el método del disco o de la arandela.
En este caso, con el método de la arandela, la seccién transversal del sélido de
revolucion es la misma que la de la arandela (véase la figura). No obstante, para
aplicar este método es necesario transformar la funcién y = 3x2 — x3 (véase la

figura 2D) en la forma x = f(y), tarea nada sencilla.

v f(x)

-1

1

|

1

-2 1
1

|

|

-3

En este tipo de situaciones, el método para calcular el volumen se denomina
método de los cascarones cilindricos. Con este método se considera el sélido como
un conjunto de cascarones cilindricos concéntricos que circunscriben el eje de
revolucion. Utilizando los métodos del disco o de la arandela, la integracion se
efectla a lo largo del eje de coordenadas paralelo a los ejes de revolucion. En
cambio, con el método de los cascarones la integracién se efectla a lo largo del eje
de coordenadas perpendicular al eje de revolucién. Al igual que antes, se considera

una region acotada por la funcién y = f(x) en el eje x, y las rectas verticales x = a
yx=benlaque0<a<b
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Asi, mediante la integral se obtiene el volumen del sélido que se obtiene al girar la
region alrededor del eje y.

b
V= 27rfxf(x)dx (3.12)

Donde 2mx representa el perimetro del cascardén o coraza elemental, la funcién
f(x) corresponde a la altura del cascarén y dx a su espesor.

En el caso de que dos curvas y = f(x) e y = g(x) acoten la regién en un intervalo
[a, b], donde 0 < g(x) < f(x) se obtendra el volumen del sélido al girar la region
alrededor del eje y, que se expresara mediante la integral de la diferencia de dos
funciones, es decir,

b

V= 27fo[f(x) —g()]dx (3.13)

a

Estas férmulas son facilmente modificables si el sélido se forma girando alrededor
del eje x. Asi, las dos ecuaciones anteriores se convierten en:

a. Silaregién estd acotada por una curvay el eje y,

d
V=2n f yf(y)dy (3.14)

c

b. Silaregidn estd acotada por dos curvas,

d
v=2n [ M) -gWldy  (315)
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Ahora, supdngase una region acotada entre la curva y = f(x) y el eje x en el
intervalo [a, b] y que gira alrededor de la recta vertical x = h. Para este caso, se
aplican las siguientes expresiones para obtener el volumen del sélido de revolucién,

b
nf(x—h)f(x)dx, sih<a<b

V= “ . (3.16)
27Tf(h—x)f(x)dx, sia<b<h

De forma similar, si la regién acotada por una curva x = f(y) y el eje y en el
intervalo [c, d] gira alrededor de la recta horizontal y = m, se obtiene un sélido
cuyo volumen viene dado por,

an(y—m)f(y)dy, sim<c<d
V= ‘< . (3.17)

an(m—y)f(y)dy, sic<d<h

A continuacién, se realiza la resolucién de problemas de solidos de revolucién
mediante el método de los cascarones cilindricos.

1. Usando el método de las capas cilindricas, calcular el volumen del sélido
obtenido al rotar la regidn bajo la curva y = 3x% — x3 en el intervalo [0, 3]
alrededor del eje y.

Solucion:

Este ejercicio se aplica el método de capas cilindricas para determinar el volumen al
rotar la curva f(x) = 3x2? — x3 alrededor del eje y, y esta definida por,

b 3 3
V= anxf(x)dx = 21fo(3x2 —x3)dx = 2nf(3x3 —x*)dx

a 0 0

= Zn{[% (3)* —é(3)5] - (01}
1215 — 972]
20

3

3 1
V =2mn |Zx4 —§x5

243 243
=2

V_243
“10 "

3
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Ty
4 f(x)
2 g
f X N
-2 0 2 4 B

2.  Usando el método de las capas cilindricas, calcular el volumen del sélido
obtenido de la regién acotada por las curvas x = y2 — 2y x = 6 — y? al rotar
alrededor del (a) eje x, y (b) la recta x = 2.

Solucion:

(a) la figura muestra la regién acotada por las curvas g(y) = x = y2 =2y f(y) =
x = 6 — y? que permite generar el sélido de revolucién alrededor del eje y. Para
este inciso se aplica la expresién 3.15 del método de capas cilindricas para
determinar el volumen, es decir,

d

2
V=o2n f YlgO) - fFO)dy = 2m f YI(6 - y2) — (v2 — 2)dy
0

c

2 2 2

1
V= Zny(S —2y?)dy = 2nf(8y —2y3)dy = 2m |4y2 —Ey‘*
0
0 0

1
V=2n [4(2)2 - 5(2)4] = 2116 — 8]

V=16mud

2 8(x)

-2
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(b) en este inciso se aplica el método de capas cilindricas para determinar el
volumen al rotar en la recta x = 2. La figura muestra el sélido de revolucién cuando
la rotacion es alrededor de la recta x = 2, entonces el radio medio es (x —2) y la
altura es 2g(x) en el intervalo 2 < x < 6 por lo tanto, el volumen se define como,

b 6
V= an(x —-2)[2g(x)]dx = an(x - 2)(2\/6 — x)dx

V=4-7rf(x—2)\/6—xdx

Se aplica cambio de variables, es decir, u = V6 — x

u?=6-—x > x=6—u? > dx = —2udu
Finalmente,
6 6 6
V= 4-7tf(6 —u? = 2)u(—2udu) = 4-1rf 2(u? — 4)udu = 87rf(u4 — 4u?)du
2 2 2
1 4 \° 1 4 6
V =8n |—us——u3 =87'[|—(\/6—x)5——(\/6—9()3
5 3 2 5 3 2
1 s 4 3 1 5 4 3 32 32
v=er{lz(0) —5(V0) 2 (V&) +3(V&)’|} = en - + 5]
5 3 5 3 5 3
V= 512 3
= ET[U

g(x)

g(x)

3. Utilice el método de las capas cilindricas para calcular el volumen del sélido de
revolucién alrededor del eje y que se obtiene de la regién acotada por la curva
y=3x—x3elejexylarectax = 1.
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Solucion:

Aplicando el método de capas cilindricas para determinar el volumen del solido de
revolucion al rotar en el eje y, es decir,

d 1 1
V= 27rf xf(x)dx = 2nfx(3x —x3)dx =21 | (3x? — x*)dx
c 0 0
V=2l — L] =2 1) — 21| = 21 - &
A TR T "[ 5 ]_”[ 5]
8
V=§7ru3

f(x)

-2

4.  Utilice el método de las capas cilindricas para encontrar el volumen del sélido
de revolucién que se forma al girar la regién acotada por las curvas y = x2,
y = 9 alrededor del eje x.

Solucion:
Al rotar alrededor del eje x el volumen se calcula en funcidn de y, es decir, que:
y = x2 > x = i\/}

Si y =9, entonces: x = /9 = 43, esto indica que la grafica estd en el intervalo
—3 < x < 3. La regi6n acotada entre las curvas y = x% e y = 9 se muestra en la
figura, y también se observa el sélido de revolucion general alrededor del eje x.
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Entonces el radio medio es y y la altura es f(y)[\/}— (—\/;)] =2,/y en el
intervalo de —3 < x < 3 por lo tanto, el volumen se define como,

d 9 9
V= 27rf yf(y)dx = 21rfy(2\/§)dy = 4nfy%dy
c 0 0
V= 4-7r| x2 = 47'[[ (9)2] 4r [486
5 5
1944 3
=—gmu
Y
10 y=9 10
8
f(x) 6
4
2
X X
-4 2 0 2 4 4 Y

-10

5. Utilice el método de las capas cilindricas para calcular el volumen del sélido de
. . .z 3
revolucién que se forma al girar la regién acotada por las curvas y = /x + 1,
y=1—x,x =1alrededor de larecta x = 1.

Solucion:

Al rotar alrededor de la recta x = 1 (verticalmente) el volumen se calcula en funcion
de x. La figura muestra el sélido de revolucién cuando la rotacién es alrededor de la
recta x = 1, entonces el radio medio se convierte en (1 — x) vy la altura también
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cambia, es decir, [f(x) — g(x)] en el intervalo de 0 < x <1 por lo tanto, el
volumen se define como,

V= ana —O[f () — g(0)]dx = ana —x) [x% +1-(1 —x)] dx

1
—2nf(1—x)(x3+x Zﬂf x3+x—x3—x)dx
0
V=2 3%+12 3% 13
=2 a3 +oxt —ox¥ — o .

3 1
V=2r L3 43 (02 -2 -5 (| = 2n [543 -2 ]
V=2 (63 + 42 — 36— 28

| 84 ]
SoM

—ET[U

Yy

2 .

f(x)

15

1

05

g(x)

X
0 05 15 2
=1

6. Utilice el método de las capas cilindricas para calcular el volumen del sélido de
revolucién que se forma al girar la regién acotada por las curvas y = x2 — 2,
y = 2 — x2, segundo y tercer cuadrante alrededor del eje y.

Solucion:
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Al rotar alrededor del eje y el volumen se calcula en funcién de x. La figura muestra
la regién acotada por las curvas f(x) = x2 — 2y g(x) = 2 — x? entre el segundo y
tercer cuadrante. El sélido de revolucién cuando la rotacién es alrededor del eje y,
el radio medio se convierte en (—x) y la altura también cambia, es decir,

[g(x) — f(x)] en el intervalo de —V2 < x < 0 por lo tanto, el volumen se define
como,

b 0
V= 2nf(—x)[g(x) — f()]dx =2m f(—x)[Z —x? — (x%2—2)]dx
a )

0 0
1
V=2m f(—x)(4 —2x¥dx =2m f(2x3 —4x)dx = 21 |§x4 — 2x?
V2 )

V=2n [[0] . [%(—«/5)4 - 2(—«/7)2]] = 2n(=2 + 4)

0

-2

V =4mu
Y
II
g(x)
1
X
-2 -1 0 1 2 :_2
Y -1
2
II1

7.  Utilice el método de las capas cilindricas para hallar el volumen del sélido de
revolucién formado al girar la regién acotada por las curvas f(x) = x2 — 4x,
g(x) = 4x — x?, alrededor de larectax = —1.

Solucion:

Al rotar alrededor del eje y el volumen se calcula en funcién de x. La figura muestra
la regidn acotada por las curvas f(x) = x? — 4xy g(x) = 4x — x? en el intervalo
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[0, 4]. El sélido de revolucidn cuando la rotacién es alrededor del eje y, el radio
medio se convierte en (x + 1) y la altura también cambia, es decir, [g(x) — f(x)]
en el intervalo de 0 < x < 4 por lo tanto, el volumen se define como,

b 4
V= 27rf(x +D[gx) — f)]dx = 2nf(x + D[4x — x? — (x? — 4x)]dx
V= 27rf(x + 1)(8x — 2x%)dx = 21rf(8x + 6x% — 2x3)dx

0 0

4

= 21 |4x?% + 2x3 —lx4 = 2w ||4(4)? + 2(4)3 —1(4-)4 —[0]
v Al >

V = 2m(64 + 128 — 128)
V =128rud

61y

g(x)

-2

8.  Utilice el método de las capas cilindricas para obtener el volumen del sélido de
revolucién formado al girar la regidn acotada por las curvas f(x) = vx — 2,
g(x) = x — 4,y = 1alrededor del eje x.

Solucion:

Al rotar alrededor del eje x el volumen se calcula en funcién de y. La figura muestra
la regién acotada por lascurvas f(x) =y =vx—2,gx) =y=x—4yy=1en
elintervalo 1 < y < 2. Expresamos las curvas en funcién de y,
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y=vx—2 =  yl=x-2 = x=f)=y*+2
y=x—4% > x=gy)=y+4

El sélido de revolucidn cuando la rotacién es alrededor del eje y, el radio medio se
convierte en (y) y la altura también cambia, es decir, [g(y) — f(¥)] en el intervalo
de 1 <y < 2 porlo tanto, el volumen se define como

d 2
V=o2n f o) — FOdy = 21 [ Yy +4) — 0% + 2)]dy

c 1
2 2

V:2nfy(2+y—y2)dy=27Tf(2y+3’2—y3)d3’
1 1
2

1 1
24 2.3 _ .4
y +3y 4)’ )

V=2n{[4+§—4]—[1+%—%]}=2n{§_£}

1 1 1 1
- = 24 .23 _ o4 |12 42,13 2. 14
V=2rm 21'[{[2 +3 2 7 2 ] [1 +3 1 7 1 ]}

3 12
V= 19
=g mu
’ Y
3
’ fx) 7 1
; g(x)
y=1 f
v 0 g
0 1 2 3 4 5 6 A
h
-1
S
-2
-3 2]

9. Utilice el método de las capas cilindricas para obtener el volumen del sélido de
revolucién formado al girar la regién acotada por las curvas y = sinx?2, x = 0,
y = 1 alrededor del eje y.

Solucion:
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En este ejercicio trata de una funciéon trigonométrica que se interseca con la curva
y = 1 para posteriormente rotarlas alrededor del eje y. Para rotaciones sobre el eje
y se utiliza el volumen del solido de revolucién en funcién de x. La figura muestra el
plano 2D y 3D (se genera el sélido de revolucién). Se procede a obtener el valor de
interseccién entre las curvas f(x) = y = sinx?y g(x) = y = 1, es decir,

1 =sinx? > x? =sin"1(1) > x% ==

En consecuencia, los extremos superior e inferior de la integral del volumen del

solido de revolucién son:
0<x< /n
<x< |[=
2

Y
15
g(x) 7
\
05 \
\
f(x) X \ X
05 0 05 1 15 2 . '\
-05
Por lo tanto,
JT/2

[T NE
V =2n f xdx—f x sin x?

0 0

b
V=27rfx [gx) — f(x)]d =27rf x[1 — (sinx?)]dx

En la segunda integral x sin x2 se aplica un cambio de variable, es decir,

1
u=x? = du = 2xdx = xdx = Edu
N 2
1 JT/2 1 i 1 Jm/2 1 JT/2
V=2m |Ex2 . —3 f sinuduy =2m |§x2 . + S cosu .
0
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v = anffoa] + p o -2 ]}~ znfir - Y -2 (F22)

3.4. Longitud de arco.

Hasta ahora, la funcién f (x) sélo eraintegrable o, a lo sumo, continua. No obstante,
en el caso de la longitud de arco, se requiere que f(x) sea mas rigurosa. Es decir,
que f(x) tiene que ser diferenciable y, sobre todo, su derivada, f’(x), tendra que
ser continua. Este tipo de funciones, que presentan derivadas continuas, reciben el
nombre de funciones suavizadas.

Sea f(x) una funcidn suavizada y definida sobre [a, b]. El objetivo es obtener la
longitud de la curva entre el punto (a, f(a)) y (b,f(b)). Para aproximar la longitud
de la curva, primero se utilizan segmentos de recta. Sea P = {x;}, para i =
0,1,2,..,n, una division regular de [a,b]. Entonces, para i =1,2,..,n, se
construye un segmento de recta desde el punto (xl-_l,f(xi_l)) hasta el punto
(xi,f(xi)). Aunque puede parecer légico utilizar segmentos de linea horizontales o
verticales, nos interesa que los segmentos de linea se aproximen lo mas posible a la
curva. La figura describe esta construccién para n=12.

y T fo fl)

)

X

a=Xp X1 X2 X3 Xz X5 Xg X7 Xg X9 Xyp Xi1 b=,\'13
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Para determinar la longitud de cada segmento de la recta, se tiene en cuenta la
variacion de la distancia vertical y la variacion de la distancia horizontal en cada
intervalo. Al utilizar una distribucién regular, las variaciones entre las distancias
horizontales durante cada intervalo dependen de Ax. No obstante, la variacion
vertical cambia de un intervalo a otro, por lo tanto, se utiliza Ay; = f(x;) — f(x;_1)
como representacion del cambio vertical en el intervalo [x;_;,x;], tal como se
muestra en la figura. Véase que algunos (o todos) valores de Ay; en ocasiones son
negativos.

f(x)

De acuerdo con el teorema de Pitagoras, en este caso la longitud del segmento de

lineaes Af = /(Ax)? + (Ay;)?. Asimismo, puede escribirse como,

o = e 14 (2

Entonces, en base al Teorema del Valor Medio, se tiene un punto x; € [x;_4, x;] tal
que f' (x;) = Ay;/Ax. Por tanto, la longitud del segmento de linea resulta ser

Af = Ax /1 + [ (DI

Al afiadir todas las longitudes de los segmentos de linea, se obtiene, la longitud de

arco definida por,
b
L= f ’1 + [f'(x)]?dx
a

Longitud del arco para y = f(x)

Sea f(x) como una funcién suavizada en el intervalo [a, b]. Por lo tanto, la longitud
de arco de la porcidn de la grafica de f (x) desde el punto (a,f(a)) hasta (b,f(b))
estd definida por,

219



b
L= f\/1 + [f'(x)]?dx (3.18)

Longitud del arco para x = f(y)

Sea f(y) como una funcion suavizada en el intervalo [c, d]. Por lo tanto, la longitud
de arco de la porcién de la grafica de f () desde el punto (c,f(c)) hasta (d,f(d))
estd definida por,

d
L= f ST OFdy (319

A continuacioén, se presenta la resolucién de ejercicios para calcular la longitud de
arco de una curva.

1. Determinar la longitud de arco de la curva y = %(x2 + 1)3/2 en el intervalo
[1,4].

Solucidn: y

La figura muestra la grafica obtenida de la curvay = f(x) =
%(x2 +1)3/2 y que es continua en el intervalo [1,4]. De

acuerdo con la expresién 3.18 primero hay que calcular la
derivada de f'(x) dada por, 30

2 3 .
f’(x)=§'E(X2+1)1/2(2x)=2x\/x2+1 . f(x)

Por lo tanto, se evalua la expresion 3.18:

fmdx = f\/l + [Zx\/xz—ﬂ]z dx 0 10

L=
4 4
L=f 1+4x2(x2+1)dx=f 4x* + 4x% + 1dx
1 1
4 4 2 4
L=f (2x2+1)2dx=f(2x2+1)dx=|§x3+x1
1 1
L:[E(4)3+4]—[E(1)3+1]:@+4—E—1
3 3 3 3
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L =45

2. Determinar la longitud de arco de la curva (y +1)2 = 4(x + 1)3 en el
intervalo [—1, 0].

Solucion: v

N

La curva se expresa de manera explicita, es decir, y =
f(x) =2(x+1)3>? -1 y es continua en el intervalo

[—1,0], tal como se muestra en la figura. Después se 4
deriva f(x) y es,

3 L
f’(x)=2-5(x+1)1/2=3(x+1)1/2=3\/x+1 0 0 1

Esta derivada f'(x) se reemplaza en la expresién 3.18:

L_f 1+ [f'(0)] dx—f/1+[3 x + ]d,x_f 1+9(x + 1dx

-1
L= f\/9x+1 dx = f(9x+10)1/2dx

Aplicamos cambio de variable:

1
v=9x+10 > dv = 9dx > dx=§dv
0

0
1 1 1 2
L= fvl/z-gdv=§f vi2dy = |§ §v3/2 9x + 10

- |ﬁ
-1

- [T |- (|- - o

L =227

3. Determinar la longitud de arco de la curva y = §x3/2 — x'/2 en el intervalo
[1,4].

Solucion:
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En la figura se observa la grafica de la y
curva y = f(x) = §x3/2 —x'? y que
es continua en el intervalo [1,4]. A
continuacion, se obtiene la derivada de 1

f(x), . /

N

£ _% g 1/2 _%x—l/z 10 % 4
1 1 -1

f'(x) _Ex T o1z

, x2.xt2 -1 x-—1

fl(x) = 2172 = e

re—
=
+
S
/-\
3_3
H\a-h

4 4 4
f\/4x+x2—2x+1 f 2+2x+1 _f (x+1)2
1 1 1

4

4

x+1
[t st s ve
1 1

ooy ]
L=[§(ﬁ)3+ﬁ]—[§(ﬁ)3+ﬁ] =S42-2-1
10
L:_
3

4. Determinar la longitud de arco de la curva 6xy = y* + 3 en el intervalo 1 <
y <2

Solucion:

La curva 6xy = y* + 3 no se expresa en términos de x, ya que hacerlo no es tan
sencillo por lo que se va a expresar en términos de y, por lo tanto,
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1y* 3 1 1

x:€7+6y ¢y :
( — _|_1 15
f = x—6y 2y

La funcién f(y) es continua en el intervalo
1 <y < 2,ydespués se deriva,
1 1,1

1
f(}’)—— 3y? 5z 7Y —Ey_z 0 05 1 15 2

1
') = E(y2 -y

Finalmente, se reemplaza en la expresion 3.19,

-t

o
-

H\‘N

2
1 1
1+Z(y2—y‘2)2dy=f\/1 +Z(y‘*—2+y‘4)dy
1

2
1+4y ————y‘4dy=f &y +o+2 y“‘dy
1
2 2
1(J/2+y‘2)2 dy=f O +yHdy= l 1y3+l-iy‘1
/4 J 2 37 "2 -1 |

2 2 2

o~
Il
H\‘N

|6y_ [6()3 2(2)] [6()5 2(1) g_%_%Jr%
=Y
12

5. Determinar lalongitud de arcodelacurvax = g\/}(y —3)enelintervalo1 <
y<9.

Solucion:
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La figura muestra la curva f(y)=x= x

1 3 .
5(\/}) —\/} y que es continua en el
intervalo 1 <y < 9. Después se procede a

calcular la derivada de f(y), 4

yol3p L1 :

Finalmente, se reemplaza en la expresién -
3.19,

L=E(\/§)3+\/§]—E(ﬁ)3+ﬁ]=9+3—%—1
32
e

L

6. Determinar la longitud de arco de la curva y = In(cos x) en el intervalo 0 <
x<m/2.

Solucion:
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La figura muestra la curva f(x) = y = In(cos x) y que v
es continua en el intervalo 0 < x < /3. A partir de la 1
curva se obtiene la derivada f’(x),

f’(x)=cosx(—smx)=—tanx olo)
0 5
Finalmente, se reemplaza en la expresion 3.18, )
b /3 w "
L= fmdx = f 1+ (—tanx)?dx P
a 0
/3 n/3 n/3

L=f 1+tan2xdx=f \/seczxdx=f secx dx
0

0 0
T T T
L = |[In(secx + tanx)|3 = [ln (sec— + tan —)] — [In(sec0 + tan 0)]
0 3 3
L=1n(2++3)—In(1+0)

L=1n(2++3)

7. Determinar la longitud de arco de la curva x%/3 + y2/3 = 1.

Solucion:
Yy
La curva dada esta expresada en forma implicita, se )
requiere ser expresada explicitamente, es decir,
3/2
y = (1 —x2/3) / . La figura muestra la curva ©J1)
3/2
fx) =y =(1-=x23) 2 A partir de la curva se '
/
obtiene la derivada f'(x), ,/
4
, 3 1/2 2 -7
Fre =5 -xr) (< 5as) S
N 7z
N\
/
1 -1/3 2/3\1/2 N
f'(x) =—x (l—x ) |

El ejercicio no nos indica el intervalo de valores de continuidad. Para calcular la
longitud de arco de la curva f(x), obsérvese la figura que tiene 4 tramos de longitud
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idénticos. Por lo tanto, se analiza un tramo de f(x) en el intervalo [0,1] y por
simetria la expresidn 3.18 se define como,

b 1
L=4 | J1+[f/)]%dx =4 | y1+ (—x~1/3(1 — x2/3)1/2)2dx
JV J

1 1 1
L= 4[ V1+x723(1 = x2/3)dx = 4[ 14x72/3 —1dx = 4[ x~2/3dx
0 0 0

L= 4fx‘1/3dx = 4 Exm : = 4{[; (1)2/3] B [O]} =4 (;)

8. Determinar la longitud de arco de la curva 9y2 = x(x — 3)? en el primer
cuadrante desde el punto x = 1 hasta el punto x = 3.

Solucion:

La figura muestra la grafica de curva 9y? = S 1Y
x(x — 3)? en el primer cuadrante en el intervalo
1 < x < 3. Acontinuacion, la ecuacion de la curva
se presenta como una funcidn explicita en

términos de x, dada por, /—-\
/’ (3,0) x
VIy?2 =x(x—3)2

= 3y=vVx(x-3) < ; SN

f(x)=y=%\/§(x—3):%(\/§)3_\/;

1
£ =5 (02— x1V2

Luego se calcula su deriva y después se reemplaza en la expresion 3.18.

1 1 1 Vx 1
x1/2 — Zym1/2 = Zy1/2 _ _y-1/2 = X2

2 2 2 2 2Vx

flx) =

W[ =
N W

Finalmente, en la expresién 3.18,
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3 3
3
L== fl/zdx+ f ‘1/2dx—|l-§x3/2+1 2x1/2
1 1 1
L=|3 [\/—+\/_] [\/—+x/_]—2\/_——
L=2131

9. Calcular la longitud de arco de la curva f(x) en el intervalo 0 < x < /2 si

flx) = f\/costdt

Solucion:

La curva f(x) se deriva aplicando el teorema fundamental del calculo, por lo tanto,

f'(x) :(j_x[f \/costdtl =+/cosx

Reemplazamos en la expresién 3.18,

/2 /2

fmdx—f /1+( cosx) dx—f V1 + cosx dx

Aplicando la siguiente identidad trigonométrica,

1 1 1
c052§x=§(1+cosx) = (1+cosx)=2coszzx
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Finalmente,

/2 /2
1 1 1 ™2
L =f 2c052—xdx=\/§f cos=xdx = |2\/Esin—x
2 2 271,
0 0
NG

1n 1 s 2
L= [zﬁsini-z] - [zﬁsinE(O)] = ZﬁsinZ—O = 2&-7

L=2

10. La figura muestra un cable telefénico que cuelga entre dos postes en x = —b
y x = b. Tiene forma de catenaria con ecuacién y = ¢ + a cosh(x/a). (a)
Hallar la longitud del cable en términos de a y b, (b) suponiendo que los dos
postes telefénicos estan separados 50 m, la longitud del cable entre los postes
es 51 m, y si el punto mas bajo del cable debe estar a 20 m del suelo, ¢a qué
altura de cada poste debe fijarse el cable?

| 4

1%

|
|
|
|
|
T
|

—b 0 b x

Solucion:

(a) Parala curva dada f(x) =y = c + acosh(x/a) se va a derivar para poder
calcular la longitud del cable en términos de a y b mediante el uso de la
expresion 3.18.

X

f'(x) = asinh (g) -% = sinh (E)

Reemplazamos en la expresién 3.18,

b b
L= f 1+ [sinh (Z)]Z dx = f 1 + sinh? (g) dx

-b -b
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Aplicando la siguiente identidad trigonométrica,

Zx : Zx
cosh“— =1 + sinh“—
a a

Finalmente, y por simetria,
b

b
L= 2[ ’cosh2 dx = 2fcosh dx = |2a51nh—| [Zasmh ]
0

0

b
L = 2asinh—
a

(b) Siel punto mas bajo de cable es 20 m, eso ocurre cuando x = 0:

fO)=c+a=20 > c=20—-a

Ademads, los dos postes telefénicos estdn y
separados 50 m (es decir, que b = 25m), la )
longitud del cable entre los posteses L = 51 m.
La figura muestra la gréficade lacurvaL =yy
que estd dada por,

_, _h25
y = 2xsinh—

25
y = 2x sinh =

-100 0 100

De la figura se observa que cuando y = 51 m,
entonces x es,

x=a=7234m

Finalmente, la altura de cada poste donde debe fijarse el cable estd dada por,

25 25
flx) = c+acosh(?) =20- a+acosh(7)

25
f(x) =20—72.34+72. 34-cosh(72 34)

f(x) = 24.36 m por encima del suelo
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Capitulo 4:
Ecuaciones
diferenciales
ordinarias
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4.1. Ecuaciones diferenciales homogéneas (variables separables) de primer orden.

Si es posible agrupar y e y' en una parte de la ecuacién diferencial y el "resto" en la
otra parte, se tiene una ecuacion diferencial con variables separables. Utilizando la
notacién y’' = dy/dx se obtiene una ecuacidn que puede escribirse de la forma:

dy _ 1) _
ax - g0 =  gO)dy = f(x)dx

donde fy g son dos funciones.

Existen diferentes maneras de expresar una ecuacion diferencial con variables
separables, tales como:

dy dy
o= 09w = = fdx
Sig(y) #0.
Una ecuacidn diferencial con variables separadas se define mediante la forma,
M(y)dy + N(x)dx =0

En general, la solucidn de esta ecuacidn viene dada por,

fM(y)dy+fN(x)dx =C

Solucién general de una ecuacién diferencial:

Por ejemplo, sea la ecuacion diferencial

df (x)
dx

Podemos ver que la funcién f;(x) = x? + x y su primera derivada verifica la
ecuacion segun la definicion de solucidn de una ecuacion diferencial. Ademas, la
funcién f5(x) = x? + 2x — 3 y su primera derivada también verifica la ecuacién,
por lo que también es una solucién (sélo una solucién) .... Entonces hay un nimero
infinito de funciones, cada una de las cuales no es mas que una solucion. En general,
la funcion,

=2x+1

fx)=y=x2+x+C

Entonces, f(x) =y se llama solucion general de la ecuacién, porque podemos
obtener todas las demds soluciones con una eleccién adecuada de la constante C.
Finalmente, la solucion general de una ecuacion diferencial es aquella que contiene
un numero de constantes igual al orden de la ecuacion.
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Solucidn particular de una ecuacion diferencial:

A la ecuaciéon diferencial se le agregan un numero de condiciones (llamadas
condiciones iniciales o condiciones de frontera) iguales al orden de la ecuacién
diferencial, lo que permite especificar las constantes opcionales en la solucién
general de la ecuacion. El resultado se denomina solucién particular de la ecuacién
porque verifica las condiciones iniciales dadas. En general, la solucién particular es
la que se deriva de la solucién general una vez definidas las constantes (utilizando
las condiciones iniciales).

A continuacidn, se presentan el desarrollo de ejercicios de ecuaciones diferenciales
de primer orden con variables separables.

1. Encontrar la solucién general de la siguiente ecuacién diferencial,
2x

dy e
dx  4y3

Solucion:

La ecuacién diferencial presentada es separable, para lo cual la expresion del
denominador del lado derecho se multiplica al diferencial dy, mientras que la
expresién del numerador se multiplica por el diferencial dx, posteriormente se
procede a integrar,

f4y3dy=fe2"dx

1 1
4= 4 — _p2x I
4y 2e +

1
y* =§ezx+C

Finalmente, la solucién general de la ecuacién diferencial es

412
= |seX +(C
y Ze

2. Encontrar la solucion general de la siguiente ecuacion diferencial,

dy
2Vx—= = /1 —y2
\/de y
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Solucion:

La ecuacién diferencial presentada es separable, y se procede como el ejercicio
anterior, las variables dependientes e independientes son separadas segln el
diferencial dy o dx, es decir,

[55-Iax

La integral de la izquierda se emplea el teorema 1.11 (véase el capitulo 1), mientras
que la del lado derecho se utiliza la integracion de una potencia, por lo tanto,

1fx‘l/zdx

[
1—y2_2

1
sin‘1y=§-2\/§+6

y = sin(vx + C) Solucién General

3.  Resolver la siguiente ecuacién diferencial,
dy e™*—x
dx y-+eY
Solucion:

Como en los ejercicios previos de esta seccion se trata de una ecuacién diferencial
separable. En consecuencia, se procede a separar las variables y aplicamos la
operacion de integracion,

f(y +e¥)dy = f(x — e ™)dx

Integramos ambas expresiones,

1 2 1 2
5V +e3’=§x —(—e™)+C

y2+2e¥ =x%2+2e7*+2C

y2—x2+2(¥—e™)=( Solucién General

4.  Encontrar la solucidn general de la siguiente ecuacidn diferencial,
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y=1+x+y+xy

Solucion:

Primero factorizamos la expresidn derecha y se observa que la ecuacién diferencial
presentada es separable, y se procede como en los ejercicios anteriores, es decir,

Z_zz(x+1)+y(x+1)=(X+1)(Y+1)
dy _
m_f(x+1)dx

Para la expresién izquierda se utiliza el teorema 1.14 (ver capitulo 1), y de la derecha
se tiene la integracion de potencia y constante, por lo tanto, la solucién general es:

1
In(y +1) = Exz +x+C Solucién General

5. Encontrar la solucion general de la siguiente ecuacion diferencial,

y =14+x+y?+xy?

Solucion:

Primero factorizamos la expresion de la derecha y como se observa que la ecuacion
diferencial es separable.

d—y:(1+x)+ 21+x)
dx y

dy 5
a—(1+x)(1+y)

Despejamos los diferenciales y aplicamos la integral en ambas expresiones,

fl f—yyz = f(l + x)dx

La expresidn izquierda corresponde al teorema 1.12 (ver capitulo 1), mientras que
de la derecha se utiliza la integracion de potencia y constante, por lo tanto,

1
tan‘1y=x+§x2+C

1
y = tan (Exz +x+ C) Solucién General
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6. Encontrar la solucion general de la siguiente ecuacion diferencial,

(x? + D(tany)y’ = x

Solucion:

La ecuacidn diferencial presentada es separable, y se procede como en los ejercicios
anteriores, en consecuencia,

d
(x? + 1)(tany)£ =x

Despejamos los diferenciales y aplicamos la integral en ambas expresiones,

f(tany)dy = fﬁdx

fsinyd _f x d
cosy Y= x2+1) x

En ambas expresiones se utiliza el método del cambio de variable,

u =cosy = du = —sinydy = sinydy = —du
1
v=x+1 = dv =2xdx = xdx=§dv

Sustituimos e integramos,

—du _ 1 (dv

u 2J) v
1
—lnu=§1nv+C

In(cosy)™t = ln( x? + 1) +C

Aplicando propiedades de logaritmo natural,

eln(cos y)™1 — eln(\/x2+1)+c
eln(cos )™ — eln(vx2+1)ec

c—
Pero, e* = (;

(cosy)™t = C/x? +1
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1
cosy

secy =Cyx2+1

Por lo tanto, la solucién general es:

=Cyx2+1

y =sec™! (C x? + 1) Solucién General

7. Resolver la siguiente ecuacién diferencial,

y~ldy + ye®©*sinxdx = 0

Solucion:

La ecuacion diferencial presentada es separable, separamos sus variables y
aplicamos integracién en ambas expresiones,

1
—dy = —yeS¥sinx dx
y

dy .

=== e®°S¥ sinx dx

y
La expresion del lado izquierdo se evalia mediante integracion de potencia, y la del
lado derecho se evalia mediante un cambio de variable. Se realiza el cambio de
variable,

V =cosx = dv = —sinx dx
Sustituimos,
fy‘zdy = f etdu
—yl=e*+C

1
—_ = gf0osx 4

y

1 .

y = P, Solucién General

8.  Encontrar la solucion general de la siguiente ecuacion diferencial,
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dy
1-x2)—==2
( x)dx y

Solucion:

Para la ecuacion diferencial presentada separamos sus variables, y aplicamos
integracidon en ambas expresiones,

fdy_f 2dx
y ) 1-—x2

La integral de la izquierda se emplea el teorema 1.14 (véase el capitulo 1), mientras
que la del lado derecho se integra por fracciones parciales, por lo tanto,

my=[—2 4
ny_f(1+x)(1—x) x

A B
=T e

Tenemos que calcular A y B mediante el método de encubrimiento,

2 2

=09 “a+1

> A=1

x=-1
2 | 2
B = =
A+l ., Q+1)

Sustituimos los valores de Ay B,

1 1
lny=f(1+x)dx+fmdx

Por lo tanto, la soluciéon general de la ecuacién diferencial es:

Iny=In(14+x)—In(1-x)+C

O también, se expresa como:
Iny =1 (1 il x) +C
ny=In{T—

Por lo tanto,

elny — eln(i%)ﬂ’] = elny — eln(it_;)ec

Pero, e¢ = (, y finalmente,

237



1+x .
y=C (1 — x) Solucion General

9.  Una funcién y(t) satisface la ecuacién diferencial

dy .
7 = _63 52
dt y y© + oy

(a) para que valores de "y" es "y" creciente, (b) para que valores de "y" es "y

decreciente, y (c) determinar la solucién general de la ecuacidn diferencial

Solucién:

Primero se procede a calcular los valores de y en las que la funcién (a) crece y (b)
decrece (conocidos como puntos criticos de la funcién que se utiliza en el criterio de
la primera y segunda derivada), y esto se calcula haciendo que y' =0, en
consecuencia,

d
Yo = y2(y? — 6y +5) =0
dt

y:o-DEy-5=0

Por lo tanto, los valores criticos de la funcién (VCF) en la que crece o decrece son:

VCF ={0,1,5}

Evaluando cada uno de los VCF, se obtiene:

y < 0, entonces ¥y’ = (—1)2(=2)(—6) = +12 > 0, es creciente

0 <y <1, entonces y' = (0.5)?(—0.5)(—4.5) = +1.125 > 0, es creciente
1 <y <5, entoncesy’ = (2)%2(1)(—3) = —12 < 0, es decreciente

y > 5, entonces y' = (6)2(5)(1) = +180 > 0, es creciente

(a) y es creciente, si

dy 5
E>O > vy y—1D—-5>0

Por lo tanto, el conjunto solucién en la que y es creciente, es:
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y € (—00,0) U (0,1) U (5,+0)

(b) y es decreciente, si

dy 5
E<O > ye(y—-1D(y -5 <0

Por lo tanto, el conjunto solucién en la que y es decreciente, es:

y €(1,5)

(c) ahora se procede a calcular la solucién general de la ecuacion diferencial de
primer orden de variable separable,

fyz(y—(g(y— 5) :fd’t

En la expresion del lado izquierdo se utiliza la técnica de integracion por fracciones
parciales

f 4y —fAd+de+de+fDd
Y2y -Dl -5 yy yzy y—ly y—5y

Se observa que la expansién de fracciones parciales se tiene factores lineales
repetidos y no repetidos. Por lo tanto, utilizamos el método del encubrimiento para
calcular los valoresde B, Cy D

! A B ¢ D
-y -5 y y* y-1 y-5
B—; —; B—l

C-DO-9,, CDED 5
C——1 ——1 = C——l

-9l W24 -
D——1 ——1 = D—i

2 -Dl 62 " 100

Como se trata de factores lineales repetidos, en este caso para calcular A se deriva
la expresion que permitié obtener B,

_—lo-D@®+ G -51)]

y=0 (v —1D*(y—5)? J=0

dB d 1
o o yeEn]
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A 6
© (y—1D2(y —5)?

¥=0

Regresando a la ecuacidn diferencial separable, se sustituyen los valores obtenidos,
por lo tanto,

fAd +de +f ¢ d+f b d—fdt
yy yzy y—ly y—5y

6 (d 11d 1 d 1 d
I _y+_f_y__f_y+_ _y:fdt
25) y 5)Jy> 4)Jy—1 100) y—5

Integramos y obtenemos la solucién general de la ecuacion diferencial,

6 1 1 1
glnlyl - 5 — Zlnly -1+ mlnly —5|=t+C Solucién General

10. Determinar la solucién general y particular de la ecuacidn diferencial de primer

orden,
dy 3x%+4x+2
dx  2(y-1)
cony(0) =-1
Solucién:

La ecuacién diferencial presentada separamos sus variables y aplicamos integrales
en ambas expresiones,

fZ(y —Ddy = f(3x2 + 4x + 2)dx

212 2—313+412+2+C
2Y Ty T ez 2t T

Por lo tanto, la solucién general de la ecuacidn diferencial es,

y2—2y=x3+2x2+2x+C Solucién General

Se sabe que la condicién inicial es y(0) = —1, lo que indicaque x = 0,y = —1 con
esto se calcula el valor de la constante C,

(-1)2 —2(=1) = 03 +2(0)2 + 2(0) + C = =3
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Finalmente, la solucidn particular de la ecuacién diferencial es,

y2—y=x3+42x?2+2x+3 Solucién Particular

11. Resolver la siguiente ecuacién diferencial,

dx xcost

dt 1+ 2x2
conx(0)=1

Solucion:

Separamos las variables de la ecuacién diferencial, y aplicamos integracidon en
ambas expresiones,

1+ 2x?
dex=fcostdt

1 2x? ]
f —+—|dx =sint+C
X x

dx
7+2fxdx=sint+€

1 )
In|x| +2-Ex2 =sint + C

In|x| + x2 =sint + C Solucién General

Se sabe que la condicidn inicial es que x = 1 cuando t = 0, y calculamos la
constante C,

In|1] + 12 =sin0+ C = c=1

Finalmente, la solucidn particular de la ecuacién diferencial es,

In|x| + x2 =sint + 1 Solucién Particular

12. Determinas las soluciones general y particular de la ecuacidn diferencial con

valor inicial definida por,
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dy 12x3 +12x?

% = y26y3 ’ Y(l) =0

Solucion:

Procedemos a separar las variables y aplicamos la integracién en ambas
expresiones,

fyzeygdy = f(12x3 + 12x%)dx

A la expresidn izquierda aplicamos cambio de variable, y la otra expresién se utiliza
integracion de potencias, por lo tanto,

1
v=y > dv = 3y?dy > y2dy = §dv

Sustituimos el cambio de variable,

f ”(1d, )—12 ! Y+12 ! 34+C
e 3 v = 4x 3x

1
§fe”dv=3x4+4x3+6

1
§e3’3 =3x*+4x3+C

e?’ = 9x* +12x3 4+ C,

Despejamos y, aplicando logaritmo neperiano en ambas expresiones,
Ine”’ = In(9x* + 12x3 + C,)

y3 =In(9x* + 12x3 + C;)

La solucidn general a la ecuacién diferencial es,

y = YIn(9x* + 12x3 + C,) Solucién General

De acuerdo con las condiciones iniciales del problema y(1) = 0, obtenemos la
constante C;.

03 =In[9(1)*+12(1)*+C,] = 0=In(21+C,)
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el = (2146w 1=214+¢
€, = —20

Finalmente, la solucidén particular explicita de la ecuacién diferencial es,

y = 3\/1n(9x4 + 12x3 — 20) Solucién Particular

13. Resolver el problema de valor inicial dado en forma explicita y determine el

intervalo en que esta definida.

, 2x 0) = —2
Y= y + x2y’ Y=
Soluciodn:

A la ecuacion diferencial presentada factorizamos para separar sus variables y
aplicamos la integracién en ambas expresiones,

dy 2x
dx  y(1+x2)

fd_f Zxd
=™

Integramos ambas expresiones, pero en la expresion derecha aplicamos un cambio
de variable,

v=x2+1 > dv = 2xdx

Se procede a sustituir el cambio de variable e integramos ambas expresiones, por lo

tanto,

1 dv
2= —
2 v

1

Eyz =lnv+C

Sustituimos el valor de v y expresamos la solucidon general explicita,

y2=2In(x>+1)+2C

y=+2In@x2+1)+C, Solucién General
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Para la condicién inicial dada y(0) = -2,
calculamos la constante C;

(-2)2=2In(02+ 1)+ C,
C,=4

Sustituimos en la soluciéon general,
quedando

y=1y2In(x2+1)+4

La grafica mostrada a la derecha se observa

de color rojo /2 In(x? + 1) + 4 y de color
azul —/2In(x?2+ 1)+ 4. Esta \(ltima

satisface la condicion inicial y(0) = —2.

I

-3

En consecuencia, la soluciéon particular de la ecuacidn diferencial es,

y = —\/2 In(x2+1)+4 Solucién Particular

Ahora determinamos el intervalo de valores de x esta definida la solucién particular
dada la condicioén inicial y(0) = —2. A continuacion, es necesario que se cumpla:

(2In(x2+1)+4>0

(ii) se sabe que In(v) no existe para v < 0, para lo cual, x? + 1 > 1 para toda x que
pertenece al conjunto de los nimeros reales (también se lee Vx € R). Por lo tanto,

In(x2+1) =0,vx € R.

(iii) finalmente, se deduce que 2In(x?2+ 1) +4 > 0,Vx € R es decir, que el

intervalo de valores es,

—00o < x < +00

14. Determinas las soluciones general y particular de la ecuacién diferencial con

valor inicial definida por,

dy y(y+1)
dx x(x—-1)’

Solucion:
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Procedemos a separar las variables y aplicamos la integracién en ambas
expresiones,

f y(ydi D~ f x(xdf i)

Para evaluar las dos expresiones utilizamos la técnica de integracion por fracciones
parciales, en consecuencia,

C D
f— y+fy—+1dy f;dx+fx_1dx

La expansién de fracciones parciales en ambas expresiones tiene factores lineales
no repetidos. Utilizamos el método del encubrimiento para calcular los valores de
A, B para la variable separable y,

1 _A+ B
yoy+1) y y+1

y=-1

De manera similar, ahora calculamos C y D

1 _C+ D
x(x—1) x x-1

1 1 c L
= = — = = —
x—1x=0 _1
1 1
D=- =- = D=1
Xle=1 1

Regresando a la expansion de fracciones parciales, se sustituyen los valores
obtenidos, por lo tanto,

I3 -5 )=
y y+1 x—1

Iny—In(y+1)=—-Inx+In(x—1)+C
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Aplicamos la propiedad de logaritmo natural de cocientes,
x—1
ln( 4 ) = ln( ) +C
y+1 X

En ambas expresiones se observa logaritmo natural y recordemos que tienen como
base a e, por lo tanto, reescribimos esta expresidon como una ecuacién exponencial,

e"GF) = () S GE) 2 (e
y :x—lec N x e_C=y+1
y+1 x x—1 y

c

Se sabe que e™“ es una constante, que se define como C;, y despejamos para

obtener la solucion general explicita de la ecuacién diferencial,

x y+1

x—1Cl:T = xyCi=x -1 +1)
xyC; =xy+x—-y—-1 = yCix—x+1)=x-1
- _x71 Solucién General

y_Clx—x+1 olucién Genera

Dada la condicidn inicial y(2) = 1, se calcula la constante Cj,

2—-1

l=—on——— = 2C,—1=1 = c, =1
C(2)—-2+1 1 1

Finalmente, la solucién particular es,

y=x-—1 Solucién Particular

15. Resolver el problema de valor inicial dado en forma explicita y determine el

intervalo en que esta definida.

2x

"= ) 2)=0
y 1+ 2y y(2)

Solucion:

Procedemos a separar sus variables y aplicamos la integracion en ambas
expresiones,
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f(l + 2y)dy = f 2xdx

Evaluamos ambas expresiones mediante integracion inmediata de potencias, y se
obtiene la solucién general implicita,

y+y2=x2+4C Solucién General

Para la condicion inicial dada y(2) = 0, calculamos la constante C

0+0*=224C = C=-4

En consecuencia, la soluciéon particular implicita de la ecuacién diferencial es,
y+yi=x2—-4

Nos pide expresar la solucidn particular explicita, para lo cual debemos resolver la
anterior ecuacion cuadratica que esta expresada de forma implicita,
y2+y+ (@ —-x)=0

—14+J12 -4 (4 —x?) —1+V1-16+4x?
2 B 2

—1++4x?—-15 . y
2

V12 =

Vi2 =

La grafica mostrada a la derecha se observa

-1—V4x2-15 2

de color rojo y de color azul

2
-1+Vax2-15 - .
B — Esta dltima satisface la T3 <)2 0 7
condicidn inicial de la solucién general dada / 9 \
/ - \
por y(2) =0 y se encuentra en el | P \
cuadrante. Y la Unica soluciéon que cumple ,’ -4 \\
con la condicidn inicial es, , / \ N
/7 -6 N\
—1++v4x%2-15 » i
y = — Solucién Particular

Ahora hallamos el intervalo de valores de x en la que esta definida, se sabe que la
solucion particular debe satisfacer a la solucidn particular, es decir, que

4x2-15>0

(2x —V15)(2x + V15) > 0
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De acuerdo con propiedades de inecuaciones, se tiene que,

2x —VIS5 >0 A 2x+V15>0 Vv 2x—+VI5<0 A 2x+V15<0
V15 V15 V15 V15

XxX>—— N X>——— \ Xx<— AN x<——

2 2 2 2
En la gréfica se observa el punto (2, 0) que corresponde a la condicidn inicial, por lo
tanto, se comprueba que la Unica solucién que satisface dicha condicién y cercano
al mismo, es,

V15

>_
X2

16. Determinar las soluciones general y particular de forma implicita para la

ecuacion diferencial ordinaria,

xy+2y—x—2

[

= 4) =2
xy—3y+x—3 Y&

Solucion:

La expresién de la izquierda la reescribimos en forma diferencia, y la expresién de
la derecha factorizamos mediante agrupacién de términos semejantes,

dy yx+2)-(x+2) &+2)(y—1)
dx  y(x—-3)+x-3 (x-3)(+1)

Separamos las variables y aplicamos integracién en ambas expresiones,

y+1 x+2

d
y - -3

Antes de evaluar las integrales de ambas expresiones aplicamos un artificio
matematico en el numerador (este método no requiere el uso de division sintética
o divisién larga, ni de cambio de variable),

G-DH+1+1 f(x_3)+3+2d
- oy-1 g
d +f -d f —3 +f > 4
Y Y= ) x=3¥ T x=3%
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fd +2f 4y —fd +5f dx
y y—1 x x—3
y+2In(y—1)=x+5In(x—-3)+C

Aplicamos propiedades de logaritmo natural,

y+In(y—-1)%?=x+In(x—-3)+C

v -1)7?

In —(x —3)8

=x—y+C

Cancelamos el logaritmo natural

L2
e (x-3)5 = px—y+C

—1)2
G-1°_ %Y oC
(x—3)°
En consecuencia, la solucién general de la ecuacion diferencial se expresa de forma
implicita,

y-12%

=37 C,e*™ Solucién General

Dada la condicidn inicial y(4) = 2 se calcula la constante Cj,

2-17? _

m = 6184_2 = 1= Clez = Cl =e 2

Finalmente, la solucidn particular de la ecuacién diferencial es,

— 2
-1 2
E—z — 3;5 =e*¥ V2 Solucién Particular

17. Resolver la siguiente ecuacién diferencial,

xy?+3y2—x2y'=0, y(1)=3
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Solucion:

A la ecuacién diferencial dada separamos sus variables y factorizamos mediante
agrupacion de términos semejantes,

dy
2_7 — 42 3
x I ye(x +3)

Aplicamos integracién en ambas expresiones, y evaluamos

dy x+3
IFII x? dx

1 X 3
—;=f;dx+fx—2dx

1 dx
——= —+3fx‘2dx
y x

——=Ilnx—=-+C
x

1_x1nx—3+Cx

y X

Por lo tanto, la solucién general es,

X

— m Solucién General

y:

Calculamos la constante C dada la condicidn inicial y(1) = 3

3 ! 32>
= —_—— = o —
—3+C(1) 3-C

33-0)=1 > 9-3C=1
C_8
3

Finalmente, la solucién particular es,

X
y=-"—"—" "¢
xlnx—3+§x
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3x

— m Solucién Particular

y:

4.2. Ecuaciones diferenciales lineales de primer orden con coeficientes

constantes.

En esta seccidn vamos a estudiar cdmo resolver ecuaciones diferenciales lineales de
primer orden con coeficientes constantes. Una ecuacidn diferencial lineal de primer
orden es cualquier relacion entre:

- una variable, por ejemplo: x
- una funcién de x denotada por y(x)
- la primera derivada de esta funcién: y'(x)

En general una ecuacidn diferencial lineal (EDL) de primer orden se define como,

dy(x)
dx

p(x) +q()y() = f(x)

donde p(x), q(x) y f(x) son funciones previamente establecidas en la EDL y que
dependen de la variable independiente. A continuacién, se muestran ejemplos de
ecuaciones diferenciales lineales y no lineales de primer orden.

(Bx2=2)y' +e*y = In(x) SI es una EDL
xy' + 2y =sinx SI es una EDL
xy' +cos?xy=x3 SI es una EDL
23y +yt=e* NO es una EDL
y +xy?=0 NO es una EDL
A+y2)y' +y=e* NO es una EDL

Una ecuacién diferencial lineal de primer orden con coeficientes constantes es
aquella en la que p(x) y q(x) son constantes, y se expresa como,

y'(0) +r(0)y(x) = f(x)

donde, r(x) = q(x)/p(x) pero p(x) # 0. Para resolver o integrar una ecuacién
diferencial de primer orden es necesario encontrar todas las funciones que verifican
la relacion que caracteriza esta ecuacién y especificar en qué intervalo o intervalos
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es vdlida la solucién. Cuando se trata de ecuaciones diferenciales lineales de primer
orden con coeficientes constantes, dicho intervalo corresponde al intervalo en el
que esta definida f(x).

Las ecuaciones diferenciales lineales de coeficientes constantes se clasifican en:

a. homogéneas (o sin segundo miembro) o ecuaciones separables

y'(x) +ry(x) =0

» hay una soluciony =0
» buscamos soluciones no cancelables en ningin punto. Entonces, la
ecuacion diferencial es separable y puede escribirse,

!

y =-ry
d
—y=—rfdx
y

Inly| =—-rx+C
y = e—rxeC
Al no cancelarse y por ser continua, no cambia de signo. Ademas, se sabe

que e¢ = C, por lo tanto,
y — Ce—rx

b. no homogéneas (o con segundo miembro)

y' () +ry(x) = f(x)

» Método de variacion de la constante, para resolver una ecuacion
diferencial lineal no homogénea tenemos que obtener la solucidn
general:

Ye =YutYp
donde,

a. Yy es la solucion homogénea de la ecuacion: y' +ry = 0 la cual
resulta ser yy; = Ce™™

b. yp esla solucidn particular de la ecuacién diferencial completa que
se obtiene a través del método de variacién de la constante y esta
solucion se obtiene buscando la forma de f(x), que puede ser una
forma algebraica, exponencial y trigonométrica.
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A continuacion, se presentan ejercicios resueltos de ecuaciones diferenciales de
primer orden con coeficientes constantes no homogéneas.

18. Determinar la solucidn general de la ecuacidn diferencial lineal de primer

orden,

y' —y=5x—-1
Solucion:

Se sabe que la ecuacién diferencial es lineal de primer orden con coeficientes
constantes y no homogénea. Para resolver este tipo de ecuaciones diferenciales
utilizamos el método de variacidn de constante.

Paso 1: obtener la solucion homogénea de,

y —-y=0 = y =y
dy
7=dx = Iny=x+C

Por lo tanto, la solucién homogénea es,
yy = Ce*

Paso 2: obtener la solucién particular de la ecuacion diferencial no homogénea
vp —yp = 5x — 1. El segundo miembro se trata de un factor lineal de la forma
yp = Ax + B. Por lo tanto, derivamos y5,:

yp=4
Después, sustituimos en la ecuacién:
yp—Yp=5x—1
A—Ax—-B=5x-1

Ordenamos y evaluamos las constantes Ay B,

—Ax+(A—B) =5x-1
—Ax = 5x =3 A=-5
A—B=-1 = —-5+1=8B > B =-4

Por lo tanto, la solucion particular es,

Vyp = —5x—4
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Finalmente, la solucidn general de la ecuacién diferencial dada es,

y; = Ce* —5x —4

19. Determinar la solucidn general de la ecuacidn diferencial lineal de primer

orden,

y' —2y=1-6x
Solucion:

Se sabe que la ecuacién diferencial es lineal de primer orden con coeficientes
constantes y no homogénea. Para resolver este tipo de ecuaciones diferenciales
utilizamos el método de variacidn de constante.

Paso 1: obtener la solucion homogénea de,

y'—2y=0 = y' =2y
dy
7:de > Iny=2x+C

Por lo tanto, la solucién homogénea es,
yuy = Ce**

Paso 2: obtener la solucién particular de la ecuacion diferencial no homogénea
Vp —2yp = 1 — 6x. El segundo miembro se trata de un factor lineal de la forma
yp = Ax + B. Por lo tanto, derivamos y,:

yp=4
Después, sustituimos en la ecuacién:
yp—2yp=1—6x
A—-2Ax—-2B=1-6x
Ordenamos y evaluamos las constantes Ay B,

—24x+(A—2B)=—6x+1

—2Ax = —6x > A=3

A-2B=1 = 3—1=2B = B=1
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Por lo tanto, la solucién particular es,
yp=3x+1

Finalmente, la solucidn general de la ecuacién diferencial dada es,

ye=Ce* +3x+1

20. Determinar la solucién general de la ecuacion diferencial lineal de primer

orden,

y' +3y=15x2+x
Solucion:

Se sabe que la ecuacién diferencial es lineal de primer orden con coeficientes
constantes y no homogénea. Vamos a utilizar el método de variacidn de constante.

Paso 1: obtener la solucion homogénea de,

y'+3y=0 = y' = -3y
dy
7:—3dx > Iny=-3x+C

Por lo tanto, la solucién homogénea es,
yy =Ce™*

Paso 2: obtener la solucién particular de la ecuacion diferencial no homogénea
yp + 3yp = 15x2 + x. El segundo miembro se trata de un factor cuadratico de la
forma y, = Ax? 4+ Bx + C. Por lo tanto, derivamos yp:

yp =24Ax+ B
Después, sustituimos en la ecuacién:
yp+3yp =x2+x
2Ax + B + 3Ax%? + 3Bx + 3C = 15x% + x
Ordenamos y evaluamos las constantes Ay B,

3Ax%2 + (2A+3B)x+ (B +3C) = 15x% + x

3A4x2% = 15x? = A=5

255



(2A+3B)x =x => 3B=1-2(5) = B=-3
B+3C=0 = 3C =-B = c=1
Por lo tanto, la solucién particular es,

yp =5x2 —3x+1

Finalmente, la solucidn general de la ecuacién diferencial dada es,

ye = Ce™3* +5x2 —3x + 1

21. Determinar la solucién general de la ecuacion diferencial lineal de primer

orden,

y' 4+ 5y = 12¢~%*
Solucion:

Se sabe que la ecuacién diferencial es lineal de primer orden con coeficientes
constantes y no homogénea. Vamos a utilizar el método de variacidn de constante.

Paso 1: obtener la solucion homogénea de,

¥y +5y=0 = y' =-5y
dy
7=—5dx = Iny=-5x+C

Por lo tanto, la solucién homogénea es,
yp = Ce™*

Paso 2: obtener la solucién particular de la ecuacion diferencial no homogénea
yp + 5yp = 12e72*, El segundo miembro se trata de un factor exponencial de la
forma yp, = Ae™%*. Por lo tanto, derivamos yp:

yp = —24e™%
Después, sustituimos en la ecuacion:
yp + 5yp = 12e7%*
—2Ae™%* + 54e™%* = 12¢™%*

Factorizamos y evaluamos la constante 4,
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34e7%* = 12e™%* = A=4
Por lo tanto, la solucidn particular es,
yp =4e™%*

Finalmente, la solucidn general de la ecuacién diferencial dada es,

yg = Ce 3% + 4e~2%

22. Determinar la solucién general de la ecuacion diferencial lineal de primer

orden,

Y +y=e*
Solucion:

Se sabe que la ecuacién diferencial es lineal de primer orden con coeficientes
constantes y no homogénea. Vamos a utilizar el método de variacidn de constante.

Paso 1: obtener la solucion homogénea de,

y'+y=0 = y'=-y
dy
7=—dx = Iny=-x+C

Por lo tanto, la solucién homogénea es,
yy =Ce™

Paso 2: obtener la solucién particular de la ecuacion diferencial no homogénea
yp + yp = e?*. El segundo miembro se trata de un factor exponencial de la forma
yp = Ae?*. Por lo tanto, derivamos yp:

yp = 24e?*
Después, sustituimos en la ecuacién:
Yp +yp = e
2Ae** + Ae?* = e%*

Factorizamos y evaluamos la constante 4,
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1
34e?* = e?* > A= 3

Por lo tanto, la solucién particular es,

1

— _p2x
Yp 33

Finalmente, la solucidn general de la ecuacién diferencial dada es,

_C—x l2x
Yg = Le +3€

23. Determinar la solucién general de la ecuacién diferencial lineal de primer

orden,

y'+y=xe™*
Solucion:

Se sabe que la ecuacién diferencial es lineal de primer orden con coeficientes
constantes y no homogénea. Vamos a utilizar el método de variacidn de constante.

Paso 1: obtener la solucion homogénea de,

y'+y=0 = y'=-y
dy
7=—dx = Iny=-x+C

Por lo tanto, la solucién homogénea es,
yy =Ce™

Paso 2: obtener la solucién particular de la ecuacion diferencial no homogénea
¥Yp + y¥p = xe . El segundo miembro se trata de un factor exponencial-lineal de la
forma yp = e *(Ax + B) pero la solucién homogénea tenemos un factor repetido,
en consecuencia, la nueva forma es yp = e *(Ax? + Bx). Por lo tanto, derivamos

Yp:
yp = e *(2Ax + B) + (4x* + Bx)(—e™)
yp = 2Axe™ + Be™ — Ax*e™™ — Bxe™

Después, sustituimos en la ecuacién:
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yp+yp =xe*
2Axe™ + Be™ — Ax%e ™ — Bxe ™ + e *(Ax% + Bx) = xe™*
2Axe™ + Be™ — Ax%e™ — Bxe ™ + Ax?e™™ + Bxe™* = xe™*
Ordenamos y evaluamos las constantes Ay B,
2Axe™* + Be™* =xe™*

1
24xe™ = xe™* = 2A=1 = A==
Be™* =0 = B=0

Por lo tanto, la solucién particular es,

1
— _A2,—X
yp =5 x%e

Finalmente, la solucidn general de la ecuacién diferencial dada es,

_C—x lz—x_ -X 12
ye = Ce +2xe =e C+2x

24. Determinar la solucién general de la ecuacion diferencial lineal de primer

orden,

y'—3y =cosx
Solucion:

Se sabe que la ecuacién diferencial es lineal de primer orden con coeficientes
constantes y no homogénea. Vamos a utilizar el método de variacidn de constante.

Paso 1: obtener la solucion homogénea de,

y' =3y=0 = y' =3y
dy
7=3dx = Iny=3x+C

Por lo tanto, la solucién homogénea es,

yuy = Ce>*
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Paso 2: obtener la solucién particular de la ecuacion diferencial no homogénea

vp — 3yp = cos x. El segundo miembro se trata de un factor sinusoidal de la forma

yp = Asinx + B cos x. Por |o tanto, derivamos yp:
yp = Acosx — Bsinx
Después, sustituimos en la ecuacién:

Yp —3Yp = COSX

Acosx —Bsinx —3Asinx — 3B cosx = cosx
Ordenamos y evaluamos las constantes Ay B,
(A—3B)cosx + (—3A—B)sinx = cosx

(=34 —-B)sinx =0 = —-34A-B=0 = B=-34 (1)
(A—3B)cosx =cosx > A—3B=1 (2)

La ecuacion (1) sustituimos en la ecuacion (2): A—3(—34) =1

A=—
10

El valor de A sustituimos en la ecuacion (1):

B 3( ! ) B 3
= — JR— = = —_—
10 10
Por lo tanto, la solucién particular es,
1 3
yp—losmx 1Ocosx
Finalmente, la solucidn general de la ecuacién diferencial dada es,
Ced™ + 1 3
= Ce —sinx ——cosx
Ve 10 10

25. Determinar la solucién general de la ecuacién diferencial lineal de primer

orden,

y' +y=4sin2x

Solucion:
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Se sabe que la ecuacién diferencial es lineal de primer orden con coeficientes
constantes y no homogénea. Vamos a utilizar el método de variacidn de constante.

Paso 1: obtener la solucion homogénea de,

y+y=0 = y' ==y
dy
7=—dx E Iny=—x+C

Por lo tanto, la solucién homogénea es,
yy =Ce™

Paso 2: obtener la solucién particular de la ecuacion diferencial no homogénea
Vp + yp = 4 sin 2x. El segundo miembro se trata de un factor sinusoidal de la forma
yp = Asin 2x + B cos 2x. Por lo tanto, derivamos yp:

Yp = 2A cos 2x — 2B sin 2x
Después, sustituimos en la ecuacién:
Yp + yp = 4sin2x
2A cos 2x — 2B sin 2x + Asin 2x + B cos 2x = 4 sin 2x

Ordenamos y evaluamos las constantes Ay B,

(2A + B) cos2x + (A — 2B) sin 2x = 4 sin 2x
(2A+B)cos2x =0 = 2A+B=0 = B=-24 (1)
(A—2B)sin2x =4sin2x = A-2B=4 (2)
La ecuacion (1) sustituimos en la ecuacién (2): A —2(—24) =1

A_1
5

El valor de A sustituimos en la ecuacion (1):

B 2 (1) B 2
= — — = = ——

5 5
Por lo tanto, la solucion particular es,

—1'2 2 2
Yp = ¢sin2x — = cos 2x
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Finalmente, la solucidn general de la ecuacién diferencial dada es,

1 2
Yo =Ce™ +§sin2x—§c052x

26. Determinar la solucién general de la ecuacién diferencial lineal de primer

orden,

y' +y = 3x 4+ 2 con condicién inicial y(0) = 4

Solucion:

Se sabe que la ecuacién diferencial es lineal de primer orden con coeficientes
constantes y no homogénea. Vamos a utilizar el método de variacidn de constante.

Paso 1: obtener la solucion homogénea de,

y'+y=0 = y' =~y
dy
7:—dx E Iny=—x+C

Por lo tanto, la solucién homogénea es,
yy =Ce™

Paso 2: obtener la solucién particular de la ecuacion diferencial no homogénea
Vp +yp = 3x + 2. El segundo miembro se trata de un factor lineal de la forma
yp = Ax + B. Por lo tanto, derivamos y5,:

yp =4
Después, sustituimos en la ecuacién:
Yp+yp=3x+2
A+Ax+B=3x+2
Ordenamos y evaluamos las constantes Ay B,
Ax+(A+B)=3x+2
Ax = 3x > A=3
A+B=2 = B=-1

Por lo tanto, la solucién particular es,
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yp=3x—1
En consecuencia, la solucién general de la ecuacién diferencial dada es,
ye=Ce™¥+3x—1
Con la condicién inicial y(0) = 4 calculamos la constante C:
4=Ce’+30)-1 = (=5

Finalmente, la solucidén es,

Ye=5e*+3x—-1

27. Determinar la solucién general de la ecuacion diferencial lineal de primer

orden,

y' —y= 1—816"‘/3 con condicién inicial y(0) = —1

Solucion:

Se sabe que la ecuacién diferencial es lineal de primer orden con coeficientes
constantes y no homogénea. Vamos a utilizar el método de variacidn de constante.

Paso 1: obtener la solucion homogénea de,

y —-y=0 = y =y
dy
7=dx = Iny=x+C

Por lo tanto, la solucién homogénea es,
yy = Ce*

Paso 2: obtener la solucién particular de la ecuacion diferencial no homogénea

Vp—Vp = 18—16"‘/3. El segundo miembro se trata de un factor exponencial de la

-x/3

forma y, = Ae . Por lo tanto, derivamos yp:

1
p=——Ae*?
Yp >

Después, sustituimos en la ecuacién:
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11
1o - ,—x/2
Yp —Vp 3 e

1 11
— = Ae™¥/2 — fe™¥2 = — ¢7¥/2
2 e e 3 e

Ordenamos y evaluamos la constante A4,

3 11 11
Ao X/2 = __p—x/2 =
2Ae g e > A v

Por lo tanto, la solucién particular es,

11

Yp = _Ee

—-x/2

En consecuencia, la solucién general de la ecuacién diferencial dada es,

11
=(Ce* —— —-x/2
Ye e 12 e
Con la condicién inicial y(0) = —1 calculamos la constante C:
11 23

1=Ce® — — ¢ c=22
TR 7 12

Finalmente, la solucidn es,

Ye=5e*+3x—-1

28. Determinar la solucién general de la ecuacién diferencial lineal de primer

orden,

y' + 3y = sin 3x con condicién inicial y(0) = 1
Solucion:

Se sabe que la ecuacién diferencial es lineal de primer orden con coeficientes
constantes y no homogénea. Vamos a utilizar el método de variacidn de constante.

Paso 1: obtener la solucion homogénea de,

y'+3y=0 = y' = -3y
dy
7:—3dx > Iny=-3x+C
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Por lo tanto, la solucién homogénea es,
yy =Ce™*

Paso 2: obtener la solucién particular de la ecuacién diferencial no homogénea
vp + 3yp = sin 3x. El segundo miembro se trata de un factor sinusoidal de la forma
yp = Asin 3x + B cos 3x. Por lo tanto, derivamos yp:

¥p = 3A cos 3x — 3B sin 3x

Después, sustituimos en la ecuacién:
¥p + 3yp = sin3x
3Acos3x — 3B sin3x + 3Asin3x + 3B cos 3x = sin 3x
Ordenamos y evaluamos las constantes Ay B,
cos 3x (34 + 3B) + sin3x (34 — 3B) = sin 3x

cos3x(3A+3B)=0 = 34A+4+3B=0 = A=-B (1)
sin3x (34—3B) =sin3x = 34-3B=1 (2)
Sustituimos la ecuacion (1) en ecuacion (2):

1
3(-B)-3B=1 = B=-2

Sustituimos B en la ecuacidén (1):

A=-
Por lo tanto, la solucion particular es,
L 3 ! 3
= —sin3x — —cos 3x
P 6

En consecuencia, la solucion general de la ecuacién diferencial dada es,
3 1 1
Y = Ce™* + —sin3x — =cos 3x
6 6
Con la condicion inicial y(0) = 1 calculamos la constante C:

1=_Ce° +lsin(0) —lcos(O) > 1=C _1
6 6 6
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Finalmente, la solucidén es,

7 _3x+1 03 1 3
Yo =¢e ¢ Sin3x — =cos 3x

29. Determinar la solucién general de la ecuacién diferencial lineal de primer

orden,

y' — 4y = sin 2x + cos 2x con condicién inicial y(0) = 1
Solucion:

Se sabe que la ecuacién diferencial es lineal de primer orden con coeficientes
constantes y no homogénea. Vamos a utilizar el método de variacidn de constante.

Paso 1: obtener la solucion homogénea de,

y' —4y=0 = y' =4y
dy
7:Al-clx > Iny=4x+C

Por lo tanto, la solucién homogénea es,
yu = Ce™

Paso 2: obtener la solucién particular de la ecuacién diferencial no homogénea
¥p — 4yp = sin 2x + cos 2x. El segundo miembro se trata de un factor sinusoidal
de la forma yp = Asin 2x + B cos 2x. Por lo tanto, derivamos yp:

yp = 2A cos 2x — 2B sin 2x
Después, sustituimos en la ecuacién:
¥p — 4yp = sin 2x + cos 2x
2A cos2x — 2B sin 2x — 4A sin 2x — 4B cos 2x = sin 2x + cos 2x
Ordenamos y evaluamos las constantes Ay B,

cos 2x (2A — 4B) + sin2x (—4A — 2B) = sin 2x + cos 2x

cos2x(2A—4B) =cos2x = 2A—4B=1 (D
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sin2x (—4A —2B) =sin2x = —4A-2B=1 2

Aplicamos la regla de Cramer para hallar A y después sustituimos en cualesquiera
de las ecuaciones (1) y (2) para hallar B.

% -0

1 —4-|
- |1 2 _ WE2)-MED 2 1
A‘| A ISR I R R A=-15
—4 =2

De la ecuacion (2) se obtiene,
2B 1 4( ! ) B 5
= -1 —_ = = —_
10

Por lo tanto, la solucién particular es,

1
Vp = —ESiHZX—ECOSZX

En consecuencia, la solucion general de la ecuacién diferencial dada es,

1 .
—Estx —ECOSZX

ax

ye = Ce

Con la condicidn inicial y(0) = 1 calculamos la constante C:

1=_Ce° L 0) 3 (0) 1=C 5
= _— —_— = = [ —
e 10sm 10cos 10
C_13
10
Finalmente, la solucién es,
3,1 ) )
yG_lOe 10sm x 10cos b

4.3. Ecuaciones diferenciales lineales de primer orden mediante factor integrante.

En general una ecuacidn diferencial lineal (EDL) de primer orden se expresa como,

dy _
o p(x)y =q(x)
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donde p(x) y q(x) son funciones que dependen de la variable independiente. Para
resolver este tipo de ecuaciones diferenciales, debemos utilizar el método del factor
integrante. Consideremos a u(x) como una funcién desconocida de este modo
tenemos,

d dy du

a(uJ/) =u——ty o

Pero,

dy
i q(x) —px)y

Por lo tanto,
d _ 4 du
Tx (wy) =u[g(x) —p()yl +y Tx
d !
Tx (uwy) = uq(x) —up(x)y + yu

d
Tx (wy) = uq(x) + y[u' —up(x)]

Si, u' —up(x) = 0, por lo tanto, se obtiene la solucién de la EDL,
d = 0
2 W) =uq() +y(0)
fd(uy) = fuq(x)dx
uy = fuq(x)dx

1
y(x) = m[ u(x)q(x)dx +C
El factor integrante se obtiene de:

u —up(x)=0 = u' = up(x)

I

u
p(x) = "

Pero,

!

| 1 u
dx(nu)_u u Tu
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Finalmente, el factor integrante es,
p(x) - (lll u)
dx

fp(x)dx =lnu
efp(x)dx — elnu
u(x) = eJ Pax
Para resolver este tipo de ecuaciones diferenciales, se dan estos 4 pasos:

Paso 1: escribimos la EDL en su forma estandar o candnica

dy _
o p(x)y = q(x)

Paso 2: calculamos el factor integrante u(x) dada por,
u(x) = eJ Pax

Paso 3: multiplicamos la ecuacién en forma estandar por u(x) vy, si recordamos que

o d
el extremo izquierdo es solo - [u(x)y], obtenemos,
X

d
u() 2+ uCPG)y = @)

d
UGy = u(xa@

Paso 4: Integramos la ultima ecuacién y obtenemos y(x) dividiendo poru(x) para
obtener,

Yo = f u(x)q () dx +

A continuacién, se presentan ejercicios resueltos mediante el uso del factor
integrante.

30. Usando el método del factor integrante determine la solucién de la ecuacidn

diferencial lineal de primer orden,

xy' + 3y = x3 con condicién inicial y(1) = 0.5

Solucion:
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Paso 1: a la EDL la dividimos para x y expresamos su forma estandar,
y +2y =
x
Paso 2: de la forma estandar se sabe que p(x) = %y calculamos el factor integrante.

3 dx
u(x) = el pax — ef;dx = 63'[7 = g3Inx — plnx?

u(x) = x3
Paso 3: multiplicamos el factor integrante u(x) a la EDL en su forma estandar,

3
x3-y’+x3-;y=x3-x2

Ordenando lo anterior se puede observar que la expresion es la solucién de la
derivada del producto de dos funciones,
x3 -y + 3x%y = x°
-z 2
2 1x3y]

d

3,1 — 45
—[x’y] =x
priiaed

Paso 4: integramos la ultima expresién y obtenemos la solucién general de la EDL,

1
fd(x3y) = fodx = x3y = gxﬁ +C

1x6 C
Ve e
_1 3 c
Y=gt

Dada la condicién inicial y(1) = 0.5, calculamos la constante C,

=C

2

[N

3 C 1
D° + E 5~

Wl = Ol

C =

Finalmente, la solucién de la EDL es,

_1 3+ 1
Y=Y T3
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31. Usando el método del factor integrante determine la solucién de la ecuacidn

diferencial lineal de primer orden,

xy' —y = x%e* con condicién inicial y(1) = e — 1
Solucion:

Paso 1: a la EDL la dividimos para x y expresamos su forma estandar,

y' = ly = xe*

x
Paso 2: de la forma estandar se sabe que p(x) = —% y calculamos el factor
integrante.

dx

x = e—lnx — elnx“1

u(x) = eJ P@ax = ef_%dx =e

1
=x1=_
ulx) =x .

Paso 3: multiplicamos el factor integrante u(x) a la EDL en su forma estandar,

Ordenando lo anterior se puede observar que la expresion es la solucién de la
derivada del producto de dos funciones,
1 1 .
oy y=¢
) Y
d (1
axlx]

drl .
dx[x y]—e

Paso 4: integramos la ultima expresién y obtenemos la solucién general de la EDL,

1 1
d(_' ):f xd —y=e*+C
f p y e*dx > o y=e" +
y =xe* + Cx
y=x(e*+0C)

Dada la condicién inicial y(1) = e — 1, calculamos la constante C,

e—1=1(e+C) = c=-1
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Finalmente, la solucién de la EDL es,

y=x(e*—-1)

32. Usando el método del factor integrante determine la solucién de la ecuacidn

diferencial lineal de primer orden,

y' 4+ 4y = e~ con condicién inicial y(0) = %
Solucion:

Este problema corresponde a una ecuacién diferencial lineal de primer orden con
coeficientes constantes no homogénea, y se utilizan dos métodos, tales como,
factor integrante (método 1) y variacidn de constante (método 2), respectivamente.

Método 1: FACTOR INTEGRANTE

Paso 1: la EDL ya esta expresada en su forma estandar,

y' +4y=e*

Paso 2: de la forma estandar se sabe que p(x) = 4y calculamos el factor integrante.
u(x) = el p@dx — of4dx — p4[dx

u(x) = e**

Paso 3: multiplicamos el factor integrante u(x) a la EDL en su forma estandar,

et .y 4 et 4y = ¥ . o¥

Ordenando lo anterior se puede observar que la expresion es la solucién de la
derivada del producto de dos funciones,

et -y’ + 4yet* = 3%
NREANI A

d

ety

d
@ [e4x y] — eSx

Paso 4: integramos la ultima expresién y obtenemos la solucién general de la EDL,

1
fd(e‘“‘ cy) = f e3*dx > ety = §e3" +C
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1
y==e 3% + (e ¥
3
Dada la condicidn inicial y(0) = g, calculamos la constante C,
4 1
—==e"4+Ce® =
3 3

c=1

Finalmente, la solucién de la EDL es,

y = %e—Sx + e—4-x

Método 2: VARIACION DE CONSTANTE

Se sabe que la ecuacién diferencial es lineal de primer orden con coeficientes
constantes y no homogénea. Vamos a utilizar el método de variacidn de constante.

Paso 1: obtener la solucion homogénea de,

y'+4y =0 > y' = —4y
dy
7:—él-dx > Iny=—4x+C

Por lo tanto, la solucién homogénea es,
yy =Ce™

Paso 2: obtener la solucién particular de la ecuacién diferencial no homogénea
¥Yp + 4yp = e*. El segundo miembro se trata de un factor exponencial de la forma
yp = Ae™*. Por lo tanto, derivamos yp:

Yp = —Ae””
Después, sustituimos en la ecuacién:
Yp+ayp=e™*
—Ae ™ +4Ae™* =e™*

Ordenamos y evaluamos las constantes Ay B,

34=1 > A=

W[ =
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Por lo tanto, la solucién particular es,

_1 X
J’P—3e

En consecuencia, la solucion general de la ecuacién diferencial dada es,

1
ye = Ce ™ + §e‘x

e iz s e 4
Con la condicién inicial y(0) = 3 calculamos la constante C:

4
==Ce’+=-¢e° =

1 4
3 3 3

c=1

Finalmente, la solucién de la EDL es,

y = %e—Sx + e—4-x

Al comparar las soluciones se observa que los dos métodos dan siempre el mismo
resultado. Aunque esto siempre sucede cuando se tienen ecuaciones diferenciales
lineales de primer orden con coeficientes constantes.

33. Usando el método del factor integrante determine la solucién de la ecuacidn

diferencial lineal de primer orden,

t3x’ + 3t%x = t con condicidn inicial x(2) = 0
Solucion:
Paso 1: a la EDL la dividimos para t3 y expresamos su forma estandar,

,+3t2 t ,+3 1
X —_— X == = X —-_X = —
t3 t3 tT t?

Paso 2: de la forma estandar se sabe que p(t) = %y calculamos el factor integrante.

3 dt
3 at 3
u(t) = efp(t)dt = eftdt = egf t = g3Int — pInt

u(t) =t3
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Paso 3: multiplicamos el factor integrante u(t) a la EDL en su forma estandar,
3 1
t3x'+t3-x=t3=
t t?

Ordenando lo anterior se puede observar que la expresion es la solucién de la
derivada del producto de dos funciones,

t-x' +3t°x =t

da
Fglt3x]

d

3 -x] =
dt[t x]=t

Paso 4: integramos la ultima expresion y obtenemos la solucién general de la EDL,

1
fd(t3'x)=ftdt > t3-x:§t2+C

t2 C
ot
1 C
TR

Dada la condicidn inicial y(2) = 0, calculamos la constante C,

0 ! + ¢ 1_¢ C 2
=— 4+ — = —_—— == = = -
2(2)  (2)3 4 8
Finalmente, la solucién de la EDL es,
1 2
T

34. Usando el método del factor integrante determine la solucién de la ecuacidn

diferencial lineal de primer orden,

y' + %y + 2 = 3x con condicion inicial y(1) = 1

Solucion:

Paso 1: a la EDL la expresamos en su forma estandar,

3
"4y =3x-2
Yoy =3x

275



Paso 2: de la forma estandar se sabe que p(x) = %y calculamos el factor integrante.

dx
u(x) — efp(x)dx — e3f7 — eSlnx — elnx3

u(x) = x3

Paso 3: multiplicamos el factor integrante 1 (x) a la EDL en su forma estandar,
3
x3-y’+x3-;y=x3-(3x—2)

Ordenando lo anterior se puede observar que la expresion es la solucién de la
derivada del producto de dos funciones,
t3y" +3x%y = (3x* — 2x3)
2 x3y]
2 x5 y] = 3x* — 2%
dx

Paso 4: integramos la ultima expresién y obtenemos la solucién general de la EDL,

3 1
fd(x3-y)=f(3x4—2x3)dx = x3-y=§x5—zx4+C
3., 1 C
y=§x _Ex—l—ﬁ

Dada la condicién inicial y(1) = 1, calculamos la constante C,

1—312 11 ¢ 1 >
_5()_5()+@ = T

Finalmente, la solucién de la EDL es,

3 1 9

— _ A2 _
T

35. Usando el método del factor integrante determine la solucién de la ecuacidn

diferencial lineal de primer orden,

_ —-15v2m?

. .« ez o e . T
cosxy’ + ysinx = 2x cos? x con condicién inicial y (Z) —

Solucion:
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Paso 1: a la EDL la expresamos en su forma estandar,

- (sinx) 5
= 2XCOSX
Y cosx Y

y' + (tanx)y = 2x cosx

Paso 2: de la forma estdndar se sabe que p(x) = tanx y calculamos el factor
integrante.

u(x) — efp(x)dx — eftanxdx — e—ln(cosx) — eln(cosx)_1

1
cosx

u(x) = (cosx)™t =

Paso 3: multiplicamos el factor integrante u(x) a la EDL en su forma estandar,

1 1 sinx 1
Y+ ( )y= -2xcosx
cosx cosx \cosx CoS x

Ordenando lo anterior se puede observar que la expresion es la solucién de la
derivada del producto de dos funciones,

1 ,+(sinx) _ 5
CcoS X Y cos? x y=ex

Eima.
dr 1
&

vl=2
COS X y] x

Paso 4: integramos la ultima expresién y obtenemos la solucién general de la EDL,

fd( ! ) f2d ! 2+cC
. — = . —
COS X Y xax COoSXx y X

y =x%cosx + Ccosx

_ -15v2m?

. ez ] s
Dada la condicién inicial y (Z) , calculamos la constante C,

Z15vam? = (E)Z cos (E) + C cos (E) = Tsver_z. g +C g

32 4 4 32 16
—15V2r?  \2m? 2 —\2r? 2
- =—C = = —C
32 32 2 2 2
C =-m?

Finalmente, la solucién de la EDL es,
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y =x2cosx —m?cosx

4.4. Aplicaciones de ecuaciones diferenciales lineales de primer orden en circuitos

eléctricos.

Los componentes basicos de los circuitos lineales son las resistencias (R), las
capacitancias (C) y las inductancias (L). El comportamiento de un circuito
compuesto Unicamente por estos elementos se rige por ecuaciones diferenciales
con coeficientes constantes. Por ejemplo, el estudio de un circuito RL se basa en la
resolucion de una ecuacion diferencial de primer orden. Por este motivo, el circuito
se denomina "circuito de primer orden".

Cuando la corriente eléctrica fluye a través de un circuito que contiene estos
elementos, se produce una caida de voltaje (diferencia o caida de potencial) a través
de cada uno de ellos, y puede medirse experimentalmente con un voltimetro.
Posteriormente se mide el voltaje, que tiene como unidad el voltio (V). La caida de
voltaje a través del elemento x se denota como V. Para calcular tedricamente estas
caidas de tensidn, se aplican las siguientes 3 reglas:

a) La caida de voltaje (V) a través de una resistencia es igual al producto de
la resistencia por la corriente (conocida como ley de Ohm).
Vg = iR
b) La caida de voltaje (V) a través de una bobina es igual al producto de la

inductancia y la variacion (instantanea) de la corriente:

v _Ldi
L= "at

c) Lacaidade voltaje (V) através del condensador es igual a la relacién entre

la carga eléctrica (q) y la capacitancia (C):

q

Ve ==

7 ¢

Utilizando esta ultima relacién y considerando que la corriente eléctrica, i, es el
ritmo de cambio de carga en funciéon del tiempo.

dg d dV,

i=—=—(CV,)=C—

a = ar ¢V dt

Las leyes de Kirchhoff de Corriente (LKC) y Voltaje (LKV) permiten traducir en

ecuaciones el comportamiento de todas estas magnitudes. Puesto que sdélo se

estudia aqui el caso de circuitos sencillos, con elementos en serie, bastara con la 22

ley (LKV) o ley de mallas. Si en un circuito eléctrico se recorre una malla (un camino
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cerrado), la suma de las caidas de voltaje debe ser cero. Dado que una fuente se
considera un aumento de voltaje, esta ley puede reformularse diciendo que la suma
de las caidas de voltaje debe ser igual al voltaje suministrado por la fuente. Si V,(t)
es la fuente de voltaje, tenemos:

Vi=Vp +V, +V,

A continuacidn, se resuelven circuitos RL y RC de primer orden, mientras que los
circuitos RLC son de segundo orden, pero, no son parte de estudio del texto. Los
problemas resueltos son tomados de los ejercicios propuestos por (Hayt et al.,
2007).

A continuacion, se presenta el desarrollo de ejercicios de circuitos RCy RL de primer
orden mediante cualquier método de resolucion de ecuaciones diferenciales vistas
en las secciones previas.

36. La figura muestra un circuito RL de primer order, se pide determinar (a) la
corriente i(t) entérminosde Ry L, y (b) i(t) con condiciéninicial i(0) = 2 mA

paraR =4.7kQyL =1 uH.

Solucion:

(a) Tenemos un circuito RL simple sin fuente de voltaje, con resistencia R y bobina
(inductor) L en serie. Se sabe que las caidas de voltaje V, = iRy V, = L di/dt. Por
lo tanto, aplicamos LKV:

di
Ve+V, =0 = iR+L—=0

Esta se expresa como EDL homogénea de coeficientes constantes, por lo tanto:
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Utilizamos el método de separacién de variables e integramos.
f i f R dt Ini R t+k
— R = P
i L =TT

Despejamos la corriente, en consecuencia,

R,
i(t) =ke ™

(b) Dado que R = 4.7 kQ, L = 1 uH y condicidn inicial i(0) = 2 mA, calculamos
primero la constante k:

i(0) =2mA = 2mA = Ce® = C=2mA

y finalmente obtenemos i(t):

_47x103, .
i(t) =2e 10°°  [mA] N i(t) = 2e~+7%10°t [mA]

37. Lafigura del ejercicio 36 muestra un circuito RL de primer order, determinar el
valor de la inductancia L, si i(0) = 2mA, R = 100 Q e i(50 us) = 735.8 uA.
Solucion:

Para este ejercicio se utiliza el valor de la corriente i(t) en términos de Ry L
obtenido en el ejercicio 36 inciso (a) de esta seccién para sustituir R = 100 Q.
Adicional, puede verse que para i(0) = 2 mA = k y nos queda,

_100,
i(t) =2e LT [mA]
También, se sabe que i(50 us) = 735.8 u4, por lo tanto,
100
(50 us) =2 x 1073~ L 0K

100(50x107°)

7358 % 107 =2 x 1073e” L
_5x1073
3679x 103 =¢" L

Finalmente, aplicando propiedades de logaritmo natural obtenemos la inductancia

L,
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_5x1073 5% 1073
In(0.3679) =lne™ ™ L = 1=

L =5mH

38. La figura muestra un circuito RC de primer order, de pide determinar (a) el

voltaje v(t) en términos de R y C, (b) v(t) con condicidn inicial v(0) = 45V

paraR = 100 MQy C = 1 uF,y (c) v(20) e i(20).

l
—_—

C == v §R

Solucion:

(a) Tenemos un circuito RC simple sin fuente de voltaje, con resistencia R y capacitor
C en serie. En el nodo superior (véase la figura) salen las corrientes i e igz. Por lo

tanto, aplicamos LKC:

i+ 0 Cdv+v 0
= = —t ==
e ¥ dt R

La ultima expresién es la EDL homogénea de

. . . —_—
coeficientes constantes, en consecuencia: O
_+..
dv 4 1 0 .
dt RC C =< v § R

Utilizamos el método de separacién de variables e
integramos.

fdv Lot 1 Lok
—_ —_— = —_
nv RC

Despejamos el voltaje, en consecuencia,

1,
v(t) = ke RC
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(b) Dado que R = 100 MQ y C = 1 uF y condicién inicial v(0) = 45 V, calculamos
primero la constante C:

v(0) = 45V = 45=ke® >  k=45V

y finalmente v(t):

1
v(t) = 4Se_mt (mA]

v(t) = 457001t [V]

(c) Nos piden v(20) e i(20), esto indica que evaluamos v(t) e i(t) cuandot = 20 s.
Primero evaluamos v(20),

v(20) = 45¢7001(20) = 450,02 = 45(0.819)

v(20) = 36.843 [V]

y finalmente, mediante ley de ohm obtenemos i(20),

v(20) 36843

1(20) = =
i(20) = 150 % 105 ~ 100 x 108

i(20) = 36.843 x 10® = 368.43 n4

39. La figura del ejercicio 38 muestra un circuito RC de primer order, determinar
el valor de la resistencia R, si se sabe que C = 100 pF, v(0) =15V, y
v(2ns) =100 mV.

Solucion:

Para este ejercicio se utiliza el valor del voltaje v(t) obtenido en el ejercicio 38 inciso
(a) de esta seccién para sustituir C = 100 pF. Adicional, puede verse que para
v(0) = 1.5V = k y nos queda,

1
v(t) = 1.5¢ R(100x10-12)"

También, se sabe que v(2 ns) = 100 mV = 0.1V, por lo tanto,

_Lo® 2x107°
v(2ns) =15e R ( )
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Finalmente, aplicando propiedad de logaritmo natural obtenemos la resistencia R,

_20 20
In(0.0667) = Ine & = ~2.708 = ——

R =7.386Q

40. Después de permanecer por horas en la configuracién indicada, el interruptor

del circuito de la figura se cierra en t = 0. Determinar (a) i, (5 us) y (b)

Lsw (5 us).

Solucion:

Para resolver este tipo de circuitos RL con interruptor, se debe analizar cuando el
switch esta abierto y cerrado. Cuando el switch esta abierto (t = 07) la bobina L
queda en cortocircuito y obtenemos la corriente inicial i, (0). La figura muestra el
circuito cuando el switch estd abierto.

Aplicamos ley de ohm para obtener 1 kQ 1 kQ
i, (0), en consecuencia, ANN AN
_ 9 9
GO = = 7 i i,0) 1
OV —-
i,(0) = 45mA T ¢
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Cuando el switch se cierra nos queda en corto el lado izquierdo del circuito,
qguedando un circuito RL de primer orden sin fuente de voltaje, tal como se muestra

en la figura.

1 kQ 1 kQ
AM——AN -
—~ l Ve
I, i,
oV = J Famn >
l i,s_fl'

En el ejercicio 36 se da los pasos para resolver circuitos RL de primer orden sin
fuentes de accionamiento. Aplicando LKV, separando variables e integrando

obtenemos i;:

. di,
Ve +V, =0 N i,R+L—L=0
dt
diy R _ di, f 1x10°
— — — = - = -
ac "ot i 4% 103

Ini, = —250 x 103t + k

Despejamos la corriente, por lo tanto,

i (t) = ke—250x103t

Dado que en condiciones iniciales i; (0) = 4.5 mA, nos queda,

i;(0) =4.5mA > 45mA = ke® > k=45mA
En consecuencia, i(t) es,
i, (t) = 4.5¢7250X10° 4]

(a) Parat = 5 us, se obtiene,

i, (5 us) = 4.57250x10°(5x107%) [ A] = 4507125 [mA|
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i, (5us) = 4.5(0.287) [mA]

i,(5us) =1.289 [mA]

(b) Parat = 5 us, se obtiene,

Iy = tsw (5 us) +i,(5 us) =

isw(5us) =9mA—1.289mA

isw(5us) =7711mA

= iy (5 us) + 1.289 mA

41. Luego de estar cerrado durante largo tiempo, el interruptor del circuito de la

figura se abre en t = 0. Determinar (a) i, (t) parat >0, (b) i, (10 ms) y (c)

calcular t; si i, (t;) = 0.5i,(0).

10 Q

AV

e T
I

Solucion:

Este tipo de circuitos RL con interruptor
es analizado cuando el switch
inicialmente estaba cerrado durante
largo tiempo, y a posteriori se analiza
cuando se abre. Dado que el switch esta
cerrado  (t=0") obtenemos Ia
corriente inicial i,(0), tal como se
observa en el circuito de la figura.

10Q 50 Q
AN AN
— 100V
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100_2A
50

,(0) =
(@) Cuando el switch se abre nos queda abierto el ramal central del circuito,
guedando un circuito RL de primer orden sin fuente de voltaje, tal como se muestra
en la figura. La resistencia equivalente es la sumatoria de las tres resistencias en
serie, R, =20+ 10 + 50 = 80 Q.

10Q 50 Q
A4 A4

§2OQ go.zH

En el ejercicio 36 se da los pasos para resolver circuitos RL de primer orden sin
fuentes de accionamiento. Aplicando LKV, separando variables e integrando
obtenemos i;:

. di,
Ve +V, =0 N iR, +L—L=0
dt
di, R, di, 80
ac T b i f 0.2

Ini, = —400t + k

Despejamos la corriente, por lo tanto,
i, (t) = ke™*00t
Dado que en condiciones iniciales i, (0) = 2 A, nos queda,

i,(0)=2A4 >  24=ke® > k=24

En consecuencia, i(t) es,

i, (£) = 2e~400 [A]
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(b) Para t = 10 ms, se obtiene,
i,(10 ms) = 2e~400(10x107%) [4] = ¢~ [4]

i, (10 ms) = 2(0.018) [A]

i, (5 us) = 0.03663 A = 36.63 [mA4]

(b) Para i, (t;) = 0.5i,(0), se obtiene t;,

i, (t)) = 0.5i,(0) = 2e~*00t1 = (.5(2)
2
2400t7 =1 = 2= et

Aplicamos propiedades de logaritmo natural para obtener t;,

In2 = In e = 0.693 = 400t,

t; = 0.00173 s = 1.73ms

42. En el caso del circuito que se muestra en la figura, (a) escribir la ecuacién
diferencial que describe la tensién vy en el resistor para t > 0, (b) resolver la
ecuacion caracteristica, y (c) calcular vy justo antes de que se abra el

interruptor, exactamente después de que se abra el interruptorent = 1s.

10 20
AAA A

— 10V
+
zwng §5H
B t=0

Solucion:



(a) El circuito de la figura tiene la misma configuracion del ejercicio 41 cuando el
interruptor esta abierto, los valores de las resistencias y bobina son diferentes. La
resistencia equivalente en serie es R, = 5 (). De manera similar al ejercicio 41,

aplicamos LKV:
Ve +V,=0

. diy
LLRS + LE =0

Pero, por ley de ohm:

vp = —i,R = —2i,
, Ur
i, = ——
L 2

Por lo tanto,

ﬂﬁ(_&)zo

dt 5 2

(b) de la ED calculamos v; mediante separacién de variables e integramos,

d
—UR = f —dt =
Ur

vg = ke

(c) la ED obtenida en el inciso
(a) describe la tension vy, pero,
depende de i;. Es decir, que
primero calculamos i; justo
antes de abrir el interruptor
parat = 0. La figura muestra
el circuito  cuando el
interruptor esta cerrado vy
aplicamos ley de ohm para
obtener i,(0)=i,(07) =
i, (0%), por lo tanto,

_ 10
lL(O) =7: 54

10
NV

20
AV

dv

= —R+vR=O

dt

Invg =—-t+k

1Q

20

MV

+
1~R(o-)§ 2Q

MV

— 10V
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Este valor i; (0) después que se abre el interruptor es i; (0%), y se sabe del inciso (a)
que vx(0*) = —2i,(0*) = —2(5) = —10V, entonces, vz (0*) = k. Por lo tanto,

vR(t) = vr(0)e™t > vR(t) = —10e™t

No confundir que vx(07) sea la condicidn inicial de la ED obtenida en el inciso (a),
por lo tanto, aplicamos divisor de voltaje,

20
vp(07) = — [V] = 6.667 [V]

Y finalmente calculamos v (1),

., 10
vp(1) = —10e~t! = -

vp(1) = =3.679 [V]

43. Determinar v (t) e ic(t) para el circuito de la figura.

=0 sxo 20kQ
O AM—— AW

=

< ~
=
U
S

=
h-‘

S +
\

(S (\N
=

T

Solucion:

Sabemos que este tipo de problemas son resueltos cuando esta cerrado y abierto el
interruptor, y viceversa. Primero analizamos cuando el interruptor esta cerrado
(véase figura), y el capacitor queda en circuito abierto para calcular el voltaje en
condiciones iniciales. Observamos en el ramal de 20 kQ que la corriente de circuito
abierto i-(0) = 0 A. Aplicamos andlisis de mallas en el ramal del interruptor para
determinar i, (0).

10 = 5ki (0) + 10%i,(0) = 10 = 15ki,(0)
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i.(0) = i,(07) =§ mA

i5(0)
-' A 5kQ 20 kQ

10V Cj)

Ahora aplicamos andlisis de mallas en el ramal abierto para determinar v.(0),

10%i,(0) = 20kic(0) + v.(0)

2
10* (§ x 10—3) = 1:(0)
20
ve(0) = vc(07) = 5 V = 6,667 V

Ahora se analiza cuando abrimos el interruptor (ver figura). Al abrir el switch la
corriente i; = 0 Ay la fuente dependiente seria 0 V, lo que nos quedaria un circuito
RC de primer orden sin fuente de voltaje en condiciones iniciales v-(0) = 6.667 V.

i;=0A
—

5kQ 20 kQ

10V

En el ejercicio 38 se aprendid a resolver este tipo de circuitos, por lo tanto,
aplicamos LKC:

o +ig=0 ¢l
= = —t ==
e T iR dt R
dv 4 1 0 f dv f 1 dt
4 = = — = -
dt "RrRC’ v (20 x 10%)(2 x 10-9)
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3

- __ — L p—25t
Inv = 40t+k = v(t) = ke

Sabemos que v-(0) = k = 6.667 V, por lo tanto,

v(t) = 6.667e~25t [V]

Por ley de ohm, determinamos i,

. v;  6.667e7%
T 20k 20x10°

i, = 0.333¢725¢ [mA]

44. Determinar v(t) e i(t) para el circuito de la figura.

50 2

20 uF =< v 200 Q t

0 (1‘ 0.1 A

Solucion:

La figura muestra el circuito cuando el interruptor estd abierto y, ademas, el
capacitor de 20 uF queda en circuito abierto con lo que calculamos v(0) en
condiciones iniciales. Observamos en el ramal de 50 Q y 20 uF que la corriente para

circuito abierto es, i (0) = 0 A.

En el nodo v, aplicamos LKC, - i;)\;\)'; Vx
i(0) +i-(0) =0.1 1 «— li 0

¢ +eic@=0a + v
i(0)=0.1 v (0) 200 O
Del lado izquierdo del circuito - -
aplicamos LKV para determinar el

D 0.1 A

voltaje en condiciones iniciales,

v(0) + 50i.(0) = 200i(0)
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v(0) = 200(0.1)
v(0)=v(0")=20V

Ahora, analizamos cuando el interruptor se cierra (ver figura izquierda).
Observamos que el nodo v, provoca que la corriente i(t) = 0, y la resistencia se
anula debido a que estd en corto. La figura derecha muestra el circuito RC de primer
orden equivalente, por lo tanto, aplicamos LKC.

500 o, v,

‘ ; +
+ ll [ ] - iic [R l
20 uF T v 2000 | 0.1A D va 20uF=R v § 50 Q)
_ [ ]

i+ 0 Cdv + v 0

= = —t ==
e Tk dt R
dv+ 1 0 fdv f 1 it
B — e = = _—= e —
dt "RrRC’ v (50)(20 x 10-9)
] 0 t+k t) = ke~10%

_ N -

nv 1000 v(t) e

Sabemos que v-(07) = k = 20V, por lo tanto,

v(t) = 20e10°t [V]

La corriente i(t) ya fue explicada, finalmente,

i(t) = 0[4]

292



Edwin Fernando Palacios Meléndez

https://orcid.org/0009-0001-3531-3037

edwin.palacios@iaen.edu.ec

Edwin Fernando Palacios Meléndez es Ingeniero en Telecomunicaciones, Magister en
Telecomunicaciones y candidato Ph. D. en Ingenieria Eléctrica con mencién en Control y
Automatizacién. Cuenta con amplia experiencia en redes Opticas, sistemas embebidos y
automatizacion, y ha liderado proyectos de innovacién tecnoldgica tanto en el sector
académico como institucional. Se ha desempefado como docente universitario por mas de 20
afos en asignaturas como Célculo, Fisica, Sistemas de Control y Telecomunicaciones. Ademas,
ha publicado articulos en revistas indexadas en IEEE y Scopus, y es autor de libros en las areas
de matematicas aplicadas e instrumentacion. Actualmente se desempefna como Director de
Innovacién Tecnoldgica en el Instituto de Altos Estudios Nacionales (IAEN), promoviendo
iniciativas de transformacién digital y desarrollo cientifico en el Ecuador.

Karla Erenia Jacome Guerrero

https://orcid.org/0009-0001-3945-8698

karla.jacomeg@gmail.com

Ingeniera de Telecomunicaciones orientada a resultados, con una Maestria en Ingenieria de
Telecomunicaciones. Durante mi tiempo en la universidad, tuve el honor de servir como
ayudante de catedra en las asignaturas de Calculo | 'y Fisica | durante dos afios, donde no solo
fortaleci mi propio conocimiento, sino que también ayudé a mis compafieros estudiantes a
comprender estos temas criticos. Esta experiencia me brindé habilidades valiosas en la
ensefianza, la resolucién de problemas y la comunicacion, cualidades que aplico con éxito en
mi carrera profesional. Mi compromiso con la excelencia académica y mi habilidad para
simplificar conceptos complejos me hacen un recurso valioso en cualquier entorno técnico y
educativo. Durante mi trabajo de tesis de Ingenieria, tuve la oportunidad de participar en el
desarrollo del disefio e implementacion de un robot mévil Soccer, utilizando la tarjeta Arduino
Nano y controlado mediante Bluetooth. También, en el trabajo de fin de master de mi Maestria
en Ingenieria de Telecomunicaciones, tuve la oportunidad de trabajar como ingeniera de
investigacién y desarrollo en un sistema de generacion termoeléctrico, donde trabajé creando
la ecuacién de un dispositivo de generacion termoeléctrica.

Robert Andrés Vega Zambrano

https://orcid.org/0009-0000-9798-7216

robertvega22@gmail.com

Ingeniero en Telecomunicaciones con enfoque practico y vocacién por el desarrollo
tecnoldgico, en constante formacion mediante certificaciones internacionales en areas como
telecomunicaciones y domotica. Durante mi etapa universitaria, me desempefié como
ayudante estudiantil en asignaturas especializadas como Comunicaciones Opticas, Sistemas
Satelitales y Electrénica, lo que me permitid no solo reforzar conocimientos técnicos clave, sino
también desarrollar habilidades en la transmision de ideas complejas de forma clara, el trabajo
colaborativo y el liderazgo académico. Como parte de mi proyecto de titulacion, disefié e
implementé un robot seguidor de linea integrando un sistema de control PID légico para su
estabilizacion. Esta experiencia fue clave para aplicar e integrar conocimientos en
programacién, electrénica, control y disefio de sistemas embebidos, consolidando mi interés
en la automatizacién, comunicaciones y la robética aplicada.

Pablo José Palacios Chafla

pablo.palacios03@cu.ucsg.edu.ec

Pablo José Palacios Chafla es estudiante de Ingenieria en Telecomunicaciones en la
Universidad Catdlica de Santiago de Guayaquil, actualmente cursando el séptimo semestre. Su
formacion se ha enfocado en el estudio de sistemas de comunicaciones analdgicas y digitales,
fundamentos de redes, propagacion de sefiales y disefio de circuitos. A lo largo de su
trayectoria académica ha demostrado compromiso, constancia y desempefio sobresaliente,
siendo reconocido con la distincion al mejor promedio de su carrera en el periodo 2024-2025.
Cuenta con experiencia en simulacion de sistemas eléctricos y electronicos utilizando
herramientas como MATLAB, Simulink y Multisim, asi como conocimientos aplicados en redes
de nueva generacién como FTTH y WiFi 6E. Ha participado en jornadas académicas y técnicas,
fortaleciendo su dominio en temas actuales como la implementacién de redes épticas,
tecnologias moviles y conectividad rural. En el dmbito profesional, realizé pasantias en
Semoinset S.A. y CNT EP, donde colaboré en tareas relacionadas con el soporte técnico,
cableado estructurado y diagndstico de fallas en sistemas de red. Actualmente, sus intereses se
centran en el disefio de soluciones tecnoldgicas orientadas a la mejora de la conectividad en
zonas de dificil acceso, el desarrollo de sistemas embebidos y la innovacién en redes méviles y
Spticas.



Efrén André Herrera Baiios

Magister en Automatizaciéon y Control Industrial, e Ingeniero en Electrénica y
Automatizacién. Se desempefia como docente universitario, consultor e ingeniero
de soporte en el sector industrial, donde ha participado activamente en proyectos
de automatizacién de procesos, integracion de tecnologias y mejora continua en
sistemas industriales.

Su labor profesional combina la experiencia técnica con el compromiso académico,
contribuyendo tanto a la formacién de nuevos profesionales como al
fortalecimiento  de  soluciones tecnolégicas en entornos productivos.
eaherrer@espol.edu.ec

Luis Efrén Herrera Bafios

Magister en Automatizaciéon y Control Industrial, e Ingeniero en Electrénica y
Automatizacién. Se ha desempefiado como docente universitario, consultor e
ingeniero de soporte en el sector industrial, donde ha participado en diversos
proyectos de automatizacion, control de procesos y modernizacién tecnoldgica.

Es becario gracias a un convenio entre la Fundacion RETECA y la University of
Applied Sciences and Arts of Southern Switzerland (SUPSI), donde ha desarrollado
actividades investigativas en el &rea cientifica de Electrénica Digital,
Microelectrénica y Bioelectrénica en el Departamento de Electrénica Aplicada. Su
experiencia combina la docencia, la investigacion aplicada y la intervencién directa
en procesos industriales, con un enfoque en la eficiencia y la innovacién
tecnoldgica.

Para contacto profesional: luefherr@espol.edu.ec

Efrén Vinicio Herrera Muentes es Ph.D.

Ingenieria, con una sélida formacién académica que incluye una Maestria en
Ingenieria de Control Industrial y una Maestria en Docencia y Gerencia en
Educacién Superior. Posee ademaés un Diplomado en Microcontroladores, un
Diplomado en Gerencia en Educacién Superior y es Especialista en Docencia en
Educacién Superior. Es Ingeniero Eléctrico con especializaciéon en Electrénica.

Con mas de 25 afos de experiencia como docente universitario, ha contribuido
significativamente a la formacién de profesionales en el éarea de ingenieria,
destacandose por su compromiso con la excelencia educativa y la innovacién en el
aula. Paralelamente, ha trabajado como consultor e ingeniero de soporte en el
sector industrial desde 1990 hasta la actualidad, colaborando en multiples
proyectos tecnoldgicos e industriales a nivel nacional.

Es coautor de libros sobre Electrénica, donde ha plasmado su experiencia y
conocimiento técnico para enriquecer la formacion académica de estudiantes y
profesionales del area. Su enfoque integral entre docencia, investigacién y practica
industrial lo posiciona como un referente en el ambito de la ingenieria aplicada y la
educacién superior en Ecuador.

Para contacto profesional: eherrera@espol.edu.ec

ISBN: 978-9942-53-140-7

1L ompds

capacitacion e investigacion

94211531



